A comparison of clinic based dosimeters based on silica optical fibre and plastic optical fibre for in vivo dosimetry

Lingxia Chen, Sinead O'Keeffe, Peter Woulfe, Elfed Lewis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Four sensors based on silica optical fibre and plastic optical fibre for clinical in-vivo dosimetry have been fabricated and tested on site at Galway Clinic. The initial comparison results have been attained for the four sensors when they have been irradiated with beam energies of 6 MV and 15 MV at different dose rates using a modern clinical linear accelerator (Linac) as the radiation source. According to the experimental test results, the sensors based on silica optical fibre exhibit greater sensitivity to the incident radiation beam than the sensors based on plastic optical fibre when they are exposed to identical irradiation conditions. The output intensity from the sensor based on silica fibre is 5 times higher than the sensor based on plastic optical fibre.

Original languageEnglish
Title of host publication25th International Conference on Optical Fiber Sensors
EditorsLibo Yuan, Youngjoo Chung, Wei Jin, Byoungho Lee, John Canning, Kentaro Nakamura
PublisherSPIE
ISBN (Electronic)9781510610910
DOIs
Publication statusPublished - 2017
Externally publishedYes
Event25th International Conference on Optical Fiber Sensors, OFS 2017 - Jeju, Korea, Republic of
Duration: 24 Apr 201728 Apr 2017

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10323
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference25th International Conference on Optical Fiber Sensors, OFS 2017
Country/TerritoryKorea, Republic of
CityJeju
Period24/04/1728/04/17

Keywords

  • Dosimeter
  • Optical fibre sensor
  • Plastic optical fibre
  • Scintillation material
  • Silica optical fibre

Fingerprint

Dive into the research topics of 'A comparison of clinic based dosimeters based on silica optical fibre and plastic optical fibre for in vivo dosimetry'. Together they form a unique fingerprint.

Cite this