TY - GEN
T1 - A Full 3D Mixed Hybrid Finite Element Model of Superabsorbent Polymers
AU - Yu, C.
AU - Malakpoor, K.
AU - Leszczynski, S.
AU - Huyghe, J. M.
N1 - Publisher Copyright:
© ASCE.
PY - 2017
Y1 - 2017
N2 - Superabsorbent polymers (SAPs) are cross-linked polymer networks with large negatively charged ion groups attached to the solid matrix (polymer chains). By the presence of these large negatively charged ion groups, Donnan osmotic pressure difference rises in and outside of the gel. The Donnan osmotic pressure difference is, as a matter of fact, the main cause for the exceptional swelling ability of SAPs. In this study, we present a dynamic mixed hybrid finite element (MHFE) model in three dimensional setting for the simulation of the finite swelling of SAPs. In this model, the normal flux is approximated using Raviart-Thomas elements, which conserve mass both locally and globally. The solid part is assumed to be isotropic and hyperelastic under isothermal conditions. The transient simulation results are verified with a semi-analytical solution in one dimension; while the 3D equilibrium results in the case of a spherical geometry are verified against the analytical solutions.
AB - Superabsorbent polymers (SAPs) are cross-linked polymer networks with large negatively charged ion groups attached to the solid matrix (polymer chains). By the presence of these large negatively charged ion groups, Donnan osmotic pressure difference rises in and outside of the gel. The Donnan osmotic pressure difference is, as a matter of fact, the main cause for the exceptional swelling ability of SAPs. In this study, we present a dynamic mixed hybrid finite element (MHFE) model in three dimensional setting for the simulation of the finite swelling of SAPs. In this model, the normal flux is approximated using Raviart-Thomas elements, which conserve mass both locally and globally. The solid part is assumed to be isotropic and hyperelastic under isothermal conditions. The transient simulation results are verified with a semi-analytical solution in one dimension; while the 3D equilibrium results in the case of a spherical geometry are verified against the analytical solutions.
UR - http://www.scopus.com/inward/record.url?scp=85026314481&partnerID=8YFLogxK
U2 - 10.1061/9780784480779.044
DO - 10.1061/9780784480779.044
M3 - Conference contribution
AN - SCOPUS:85026314481
T3 - Poromechanics 2017 - Proceedings of the 6th Biot Conference on Poromechanics
SP - 362
EP - 369
BT - Poromechanics 2017 - Proceedings of the 6th Biot Conference on Poromechanics
A2 - Dangla, Patrick
A2 - Pereira, Jean-Michel
A2 - Ghabezloo, Siavash
A2 - Vandamme, Matthieu
PB - American Society of Civil Engineers (ASCE)
T2 - 6th Biot Conference on Poromechanics, Poromechanics 2017
Y2 - 9 July 2017 through 13 July 2017
ER -