A fully enclosed, 3D printed, hybridized nanogenerator with flexible flux concentrator for harvesting diverse human biomechanical energy

Pukar Maharjan, Hyunok Cho, M. Salauddin Rasel, Md Salauddin, Jae Yeong Park

Research output: Contribution to journalArticlepeer-review

Abstract

Human body motion is highly regarded as a promising source of energy for powering body-worn electronic devices and health monitoring sensors. Transforming the human biomechanical energy into an electrical energy provides a sustainable energy to drive those devices and sensors, reducing their battery dependency. This work presents a fully-enclosed wrist-wearable hybridized electromagnetic-triboelectric nanogenerator (FEHN) for effectively scavenging energy from the low-frequency natural human wrist-motion (≤ 5 Hz). The FEHN incorporates the rolling electrostatic induction and electromagnetic induction using a freely moving magnetic ball inside a hollow circular tube. The materials used in 3D printing technology are used as energy harvesting material for easy, quick and worthwhile fabrication of the FEHN. A thin flexible flux concentrating material is introduced to increase the emf and enhances the electromagnetic output performance. The FEHN can harvest energy under the diverse circumstances and irregular wrist-motions, such as swinging, waving, shaking, etc. Following the experiments, the FEHN achieves an average power density of 0.118 mW cm−3 and can drive a commercial wrist-watch continuously for more than 23 min from just 5 s of wrist motion. This successful demonstration renders an effective approach for scavenging wasted biomechanical energy and provides a promising solution towards the development of sustainable power supply for wearable electronic devices and self-powered healthcare monitoring sensors.

Original languageEnglish
Pages (from-to)213-224
Number of pages12
JournalNano Energy
Volume53
DOIs
Publication statusPublished - Nov 2018
Externally publishedYes

Keywords

  • Biomechanical energy
  • Fully-enclosed
  • Hybrid nanogenerator
  • Self-powered sensor
  • Wrist-wearable energy harvester

Fingerprint

Dive into the research topics of 'A fully enclosed, 3D printed, hybridized nanogenerator with flexible flux concentrator for harvesting diverse human biomechanical energy'. Together they form a unique fingerprint.

Cite this