TY - JOUR
T1 - A multivariate approach to the integration of multi-omics datasets
AU - Meng, Chen
AU - Kuster, Bernhard
AU - Culhane, Aedín C.
AU - Gholami, Amin M.
PY - 2014/5/29
Y1 - 2014/5/29
N2 - Background: To leverage the potential of multi-omics studies, exploratory data analysis methods that provide systematic integration and comparison of multiple layers of omics information are required. We describe multiple co-inertia analysis (MCIA), an exploratory data analysis method that identifies co-relationships between multiple high dimensional datasets. Based on a covariance optimization criterion, MCIA simultaneously projects several datasets into the same dimensional space, transforming diverse sets of features onto the same scale, to extract the most variant from each dataset and facilitate biological interpretation and pathway analysis. Results: We demonstrate integration of multiple layers of information using MCIA, applied to two typical " omics" research scenarios. The integration of transcriptome and proteome profiles of cells in the NCI-60 cancer cell line panel revealed distinct, complementary features, which together increased the coverage and power of pathway analysis. Our analysis highlighted the importance of the leukemia extravasation signaling pathway in leukemia that was not highly ranked in the analysis of any individual dataset. Secondly, we compared transcriptome profiles of high grade serous ovarian tumors that were obtained, on two different microarray platforms and next generation RNA-sequencing, to identify the most informative platform and extract robust biomarkers of molecular subtypes. We discovered that the variance of RNA-sequencing data processed using RPKM had greater variance than that with MapSplice and RSEM. We provided novel markers highly associated to tumor molecular subtype combined from four data platforms. MCIA is implemented and available in the R/Bioconductor " omicade4" package. Conclusion: We believe MCIA is an attractive method for data integration and visualization of several datasets of multi-omics features observed on the same set of individuals. The method is not dependent on feature annotation, and thus it can extract important features even when there are not present across all datasets. MCIA provides simple graphical representations for the identification of relationships between large datasets.
AB - Background: To leverage the potential of multi-omics studies, exploratory data analysis methods that provide systematic integration and comparison of multiple layers of omics information are required. We describe multiple co-inertia analysis (MCIA), an exploratory data analysis method that identifies co-relationships between multiple high dimensional datasets. Based on a covariance optimization criterion, MCIA simultaneously projects several datasets into the same dimensional space, transforming diverse sets of features onto the same scale, to extract the most variant from each dataset and facilitate biological interpretation and pathway analysis. Results: We demonstrate integration of multiple layers of information using MCIA, applied to two typical " omics" research scenarios. The integration of transcriptome and proteome profiles of cells in the NCI-60 cancer cell line panel revealed distinct, complementary features, which together increased the coverage and power of pathway analysis. Our analysis highlighted the importance of the leukemia extravasation signaling pathway in leukemia that was not highly ranked in the analysis of any individual dataset. Secondly, we compared transcriptome profiles of high grade serous ovarian tumors that were obtained, on two different microarray platforms and next generation RNA-sequencing, to identify the most informative platform and extract robust biomarkers of molecular subtypes. We discovered that the variance of RNA-sequencing data processed using RPKM had greater variance than that with MapSplice and RSEM. We provided novel markers highly associated to tumor molecular subtype combined from four data platforms. MCIA is implemented and available in the R/Bioconductor " omicade4" package. Conclusion: We believe MCIA is an attractive method for data integration and visualization of several datasets of multi-omics features observed on the same set of individuals. The method is not dependent on feature annotation, and thus it can extract important features even when there are not present across all datasets. MCIA provides simple graphical representations for the identification of relationships between large datasets.
KW - Data integration
KW - Multiple co-inertia
KW - Multivariate analysis
KW - Omic data
KW - Visualization
UR - http://www.scopus.com/inward/record.url?scp=84902257693&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-15-162
DO - 10.1186/1471-2105-15-162
M3 - Article
C2 - 24884486
AN - SCOPUS:84902257693
SN - 1471-2105
VL - 15
JO - BMC Bioinformatics
JF - BMC Bioinformatics
IS - 1
M1 - 162
ER -