TY - JOUR
T1 - A Needle in a Haystack
T2 - Transient Porosity in a Closed Pore Square Lattice Coordination Network
AU - Koupepidou, Kyriaki
AU - Eaby, Alan C.
AU - Sensharma, Debobroto
AU - Javan Nikkhah, Sousa
AU - He, Tao
AU - Lusi, Matteo
AU - Vandichel, Matthias
AU - Barbour, Leonard J.
AU - Mukherjee, Soumya
AU - Zaworotko, Michael J.
N1 - Publisher Copyright:
© 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.
PY - 2025
Y1 - 2025
N2 - Guest transport through discrete voids (closed pores) in crystalline solids is poorly understood. Herein, we report the gas sorption properties of a nonporous coordination network, {[Co(bib)2Cl2] ⋅ 2MeOH}n (sql-bib-Co-Cl-α), featuring square lattice (sql) topology and the bent linker 1,3-bis(1H-imidazol-1-yl)benzene (bib). The as-synthesized sql-bib-Co-Cl-α has 11.3 % (313 Å3) of its unit cell volume in closed pores occupied by methanol (MeOH). Upon desolvation and air exposure, sql-bib-Co-Cl-α underwent a single-crystal to single-crystal (SC-SC) phase transformation to sql-bib-Co-Cl-β′, wherein MeOH was replaced by water. Activation (vacuum or N2 flow) resulted in dehydration and retention of the closed pores, affording sql-bib-Co-Cl-β with 7.7 % (194 Å3) guest-accessible space. sql-bib-Co-Cl-β was found to preferentially adsorb C2H2 (at 265 K) over CO2 (at 195 K) through gate-opening mechanisms, at gate-opening pressures of 59.8 and 27.7 kPa, respectively, while other C2 gases were excluded. PXRD was used to monitor transformations between the three phases of sql-bib-Co-Cl, while in situ DSC, in situ SCXRD under CO2 pressure, and computational studies provided insight into the guest transport mechanism, which we attribute to the angular, flexible nature of the bib ligand. Further, the preferential adsorption of C2H2 over CO2 and other C2 gases suggests that transiently porous sorbents might have utility in separations.
AB - Guest transport through discrete voids (closed pores) in crystalline solids is poorly understood. Herein, we report the gas sorption properties of a nonporous coordination network, {[Co(bib)2Cl2] ⋅ 2MeOH}n (sql-bib-Co-Cl-α), featuring square lattice (sql) topology and the bent linker 1,3-bis(1H-imidazol-1-yl)benzene (bib). The as-synthesized sql-bib-Co-Cl-α has 11.3 % (313 Å3) of its unit cell volume in closed pores occupied by methanol (MeOH). Upon desolvation and air exposure, sql-bib-Co-Cl-α underwent a single-crystal to single-crystal (SC-SC) phase transformation to sql-bib-Co-Cl-β′, wherein MeOH was replaced by water. Activation (vacuum or N2 flow) resulted in dehydration and retention of the closed pores, affording sql-bib-Co-Cl-β with 7.7 % (194 Å3) guest-accessible space. sql-bib-Co-Cl-β was found to preferentially adsorb C2H2 (at 265 K) over CO2 (at 195 K) through gate-opening mechanisms, at gate-opening pressures of 59.8 and 27.7 kPa, respectively, while other C2 gases were excluded. PXRD was used to monitor transformations between the three phases of sql-bib-Co-Cl, while in situ DSC, in situ SCXRD under CO2 pressure, and computational studies provided insight into the guest transport mechanism, which we attribute to the angular, flexible nature of the bib ligand. Further, the preferential adsorption of C2H2 over CO2 and other C2 gases suggests that transiently porous sorbents might have utility in separations.
KW - coordination network
KW - crystal engineering
KW - phase transformation
KW - transient porosity
UR - http://www.scopus.com/inward/record.url?scp=85217781727&partnerID=8YFLogxK
U2 - 10.1002/anie.202423521
DO - 10.1002/anie.202423521
M3 - Article
AN - SCOPUS:85217781727
SN - 1433-7851
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
ER -