A reduced two-dimensional one-phase model for analysis of the anode of a DMFC

Michael Vynnycky, Erik Birgersson, Joakim Nordlund, Henrik Ekström, Göran Lindbergh

Research output: Contribution to journalArticlepeer-review

Abstract

An isothermal two-dimensional liquid phase model for the conservation of mass, momentum, and species in the anode of a direct methanol fuel cell (DMFC) is presented and analyzed. The inherent electrochemistry in the DMFC anode active layer is reduced to boundary conditions via parameter adaption, The model is developed for the case when the geometry aspect ratio is small, and it is shown that, under realistic operating conditions, a reduced model, which nonetheless describes all the essential physics of the full model, can be derived. The significant benefits of this approach are that physical trends become much more apparent than in the full model and that there is considerable reduction in the time required to compute numerical solutions, a fact especially useful for wide-ranging parameter studies. Such a study is then performed in terms of the three nondimensional parameters that emerge from the analysis, and we subsequently interpret our results in terms of the dimensional design and operating parameters. In particular, we highlight their effect on methanol mass transfer in the flow channel and on the current density. The results indicate the relative importance of mass-transfer resistance in both the flow channel and the adjacent porous backing.

Original languageEnglish (Ireland)
Pages (from-to)A1368-A1376
JournalJournal of the Electrochemical Society
Volume150
Issue number10
DOIs
Publication statusPublished - Oct 2003

Fingerprint

Dive into the research topics of 'A reduced two-dimensional one-phase model for analysis of the anode of a DMFC'. Together they form a unique fingerprint.

Cite this