TY - JOUR
T1 - A Review on the Adsorption Isotherms and Design Calculations for the Optimization of Adsorbent Mass and Contact Time
AU - Murphy, Orla P.
AU - Vashishtha, Mayank
AU - Palanisamy, Parimaladevi
AU - Kumar, K. Vasanth
N1 - Publisher Copyright:
© 2023 American Chemical Society. All rights reserved.
PY - 2023/5/23
Y1 - 2023/5/23
N2 - Adsorption is a widely used chemical engineering unit operation for the separation and purification of fluid streams. Typical uses of adsorption include the removal of targeted pollutants like antibiotics, dyes, heavy metals, and other small to large molecules from aqueous solutions or wastewater. To date several adsorbents that vary in terms of their physicochemical properties and costs have been tested for their efficacy to remove these pollutants from wastewater. Irrespective of the type of adsorbent, nature of the pollutant, or experimental conditions, the overall cost of adsorption depends directly on the adsorption contact time and the cost of the adsorbent materials. Thus, it is essential to minimize the amount of adsorbent and the contact time required. We carefully reviewed the attempts made by several researchers to minimize these two parameters using theoretical adsorption kinetics and isotherms. We also clearly explained the theoretical methods and the calculation procedures involved during the optimization of the adsorbent mass and the contact time. To complement the theoretical calculation procedures, we also made a detailed review on the theoretical adsorption isotherms that are commonly used to model experimental equilibrium data that can be used to optimize the adsorbent mass.
AB - Adsorption is a widely used chemical engineering unit operation for the separation and purification of fluid streams. Typical uses of adsorption include the removal of targeted pollutants like antibiotics, dyes, heavy metals, and other small to large molecules from aqueous solutions or wastewater. To date several adsorbents that vary in terms of their physicochemical properties and costs have been tested for their efficacy to remove these pollutants from wastewater. Irrespective of the type of adsorbent, nature of the pollutant, or experimental conditions, the overall cost of adsorption depends directly on the adsorption contact time and the cost of the adsorbent materials. Thus, it is essential to minimize the amount of adsorbent and the contact time required. We carefully reviewed the attempts made by several researchers to minimize these two parameters using theoretical adsorption kinetics and isotherms. We also clearly explained the theoretical methods and the calculation procedures involved during the optimization of the adsorbent mass and the contact time. To complement the theoretical calculation procedures, we also made a detailed review on the theoretical adsorption isotherms that are commonly used to model experimental equilibrium data that can be used to optimize the adsorbent mass.
UR - http://www.scopus.com/inward/record.url?scp=85156200088&partnerID=8YFLogxK
U2 - 10.1021/acsomega.2c08155
DO - 10.1021/acsomega.2c08155
M3 - Review article
AN - SCOPUS:85156200088
SN - 2470-1343
VL - 8
SP - 17407
EP - 17430
JO - ACS Omega
JF - ACS Omega
IS - 20
ER -