TY - JOUR
T1 - A spectroscopic investigation into the setting and mechanical properties of titanium containing glass polyalkenoate cements
AU - Wren, A. W.
AU - Kidari, A.
AU - Cummins, N. M.
AU - Towler, M. R.
N1 - Publisher Copyright:
© Springer Science+Business Media, LLC 2010.
PY - 2010/8/1
Y1 - 2010/8/1
N2 - Titanium (Ti) implants are extensively used in a number of biomedical and dental applications. This work introduces Ti into the glass phase of a zinc based glass polyalkenoate cement (GPC) and investigates changes in handling and mechanical properties considering two molecular weight polyacrylic acids (PAA), E9 and E11. Considering the handling properties, the working time (Tw) increased from 50 sE9, 32 sE11 (BT 101, Ti-free) to 169 sE9, 74 sE11 with TW-Z (highest Ti content), respectively. The setting time (Ts) increased from 76 sE9, 47 sE11 (BT 101) to 303 sE9, 232 sE11 with TW-Z, respectively. Ti was also found to have a significant increase on both compressive (σc) and biaxial flexural strength (σf), where σc increased from 36 MPaE9, 56 MPaE11 (BT 101) to 56 MPaE9 and 70 MPaE11 with TW-Z respectfully. σf also increased from 11 MPaE9, 22 MPaE11 (BT 101) to 22 MPaE9 and 77 MPaE11 with TW-Z, respectively. No increase in mechanical properties was evident with respect to maturation. Raman Spectroscopy was employed to investigate changes in glass structure and the setting of the cements with. This revealed increased glass network disruption with increasing TiO2 content and matured cement setting with TW-Z as compared to the control BT 101. FT-IR was then employed to investigate any additional setting mechanism and changes with time. Spectroscopy determined that Ca2+/Sr2+PAA complexes are primarily responsible for the setting and mechanical strength with no changes occurring over time.
AB - Titanium (Ti) implants are extensively used in a number of biomedical and dental applications. This work introduces Ti into the glass phase of a zinc based glass polyalkenoate cement (GPC) and investigates changes in handling and mechanical properties considering two molecular weight polyacrylic acids (PAA), E9 and E11. Considering the handling properties, the working time (Tw) increased from 50 sE9, 32 sE11 (BT 101, Ti-free) to 169 sE9, 74 sE11 with TW-Z (highest Ti content), respectively. The setting time (Ts) increased from 76 sE9, 47 sE11 (BT 101) to 303 sE9, 232 sE11 with TW-Z, respectively. Ti was also found to have a significant increase on both compressive (σc) and biaxial flexural strength (σf), where σc increased from 36 MPaE9, 56 MPaE11 (BT 101) to 56 MPaE9 and 70 MPaE11 with TW-Z respectfully. σf also increased from 11 MPaE9, 22 MPaE11 (BT 101) to 22 MPaE9 and 77 MPaE11 with TW-Z, respectively. No increase in mechanical properties was evident with respect to maturation. Raman Spectroscopy was employed to investigate changes in glass structure and the setting of the cements with. This revealed increased glass network disruption with increasing TiO2 content and matured cement setting with TW-Z as compared to the control BT 101. FT-IR was then employed to investigate any additional setting mechanism and changes with time. Spectroscopy determined that Ca2+/Sr2+PAA complexes are primarily responsible for the setting and mechanical strength with no changes occurring over time.
UR - http://www.scopus.com/inward/record.url?scp=77951940131&partnerID=8YFLogxK
U2 - 10.1007/s10856-010-4089-2
DO - 10.1007/s10856-010-4089-2
M3 - Article
C2 - 20464456
AN - SCOPUS:77951940131
SN - 0957-4530
VL - 21
SP - 2355
EP - 2364
JO - Journal of Materials Science: Materials in Medicine
JF - Journal of Materials Science: Materials in Medicine
IS - 8
ER -