TY - JOUR
T1 - A standard-based internet of things platform and data flow modeling for smart environmental monitoring
AU - Filho, Tércio
AU - Fernando, Luiz
AU - Rabelo, Marcos
AU - Silva, Sérgio
AU - Santos, Carlos
AU - Ribeiro, Maria
AU - Grout, Ian A.
AU - Moreira, Waldir
AU - Oliveirajr., Antonio
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/6/2
Y1 - 2021/6/2
N2 - The environment consists of the interaction between the physical, biotic, and anthropic means. As this interaction is dynamic, environmental characteristics tend to change naturally over time, requiring continuous monitoring. In this scenario, the internet of things (IoT), together with traditional sensor networks, allows for the monitoring of various environmental aspects such as air, water, atmospheric, and soil conditions, and sending data to different users and remote applications. This paper proposes a Standard-based Internet of Things Platform and Data Flow Modeling for Smart Environmental Monitoring. The platform consists of an IoT network based on the IEEE 1451 standard which has the network capable application processor (NCAP) node (coordinator) and multiple wireless transducers interface module (WTIM) nodes. A WTIM node consists of one or more transducers, a data transfer interface and a processing unit. Thus, with the developed network, it is possible to collect environmental data at different points within a city landscape, to perform analysis of the communication distance between the WTIM nodes, and monitor the number of bytes transferred according to each network node. In addition, a dynamic model of data flow is proposed where the performance of the NCAP and WTIM nodes are described through state variables, relating directly to the information exchange dynamics between the communicating nodes in the mesh network. The modeling results showed stability in the network. Such stability means that the network has capacity of preserve its flow of information, for a long period of time, without loss frames or packets due to congestion.
AB - The environment consists of the interaction between the physical, biotic, and anthropic means. As this interaction is dynamic, environmental characteristics tend to change naturally over time, requiring continuous monitoring. In this scenario, the internet of things (IoT), together with traditional sensor networks, allows for the monitoring of various environmental aspects such as air, water, atmospheric, and soil conditions, and sending data to different users and remote applications. This paper proposes a Standard-based Internet of Things Platform and Data Flow Modeling for Smart Environmental Monitoring. The platform consists of an IoT network based on the IEEE 1451 standard which has the network capable application processor (NCAP) node (coordinator) and multiple wireless transducers interface module (WTIM) nodes. A WTIM node consists of one or more transducers, a data transfer interface and a processing unit. Thus, with the developed network, it is possible to collect environmental data at different points within a city landscape, to perform analysis of the communication distance between the WTIM nodes, and monitor the number of bytes transferred according to each network node. In addition, a dynamic model of data flow is proposed where the performance of the NCAP and WTIM nodes are described through state variables, relating directly to the information exchange dynamics between the communicating nodes in the mesh network. The modeling results showed stability in the network. Such stability means that the network has capacity of preserve its flow of information, for a long period of time, without loss frames or packets due to congestion.
KW - Data flow modeling
KW - IEEE 1451 standard
KW - IoT platform
KW - Smart environmental monitoring
UR - http://www.scopus.com/inward/record.url?scp=85108111822&partnerID=8YFLogxK
U2 - 10.3390/s21124228
DO - 10.3390/s21124228
M3 - Article
C2 - 34203055
AN - SCOPUS:85108111822
SN - 1424-8220
VL - 21
JO - Sensors
JF - Sensors
IS - 12
M1 - 4228
ER -