TY - JOUR
T1 - A whey protein hydrolysate promotes insulinotropic activity in a clonal pancreatic β-cell line and enhances glycemic function in ob/ob mice
AU - Gaudel, Celine
AU - Nongonierma, Alice B.
AU - Maher, Samuel
AU - Flynn, Sarah
AU - Krause, Mauricio
AU - Murray, Brian A.
AU - Kelly, Phillip M.
AU - Baird, Alan W.
AU - FitzGerald, Richard J.
AU - Newsholme, Philip
PY - 2013/7/1
Y1 - 2013/7/1
N2 - Whey protein hydrolysates (WPHs) represent novel antidiabetic agents that affect glycemia in animals and humans, but little is known about their insulinotropic effects. The effects of a WPH were analyzed in vitro on acute glucose-induced insulin secretion in pancreatic BRIN-BD11 β cells. WPH permeability across Caco-2 cell monolayers was determined in a 2-tiered intestinal model. WPH effects on insulin resistance were studied in vivo following an 8-wk oral ingestion (100mg/kg body weight) by ob/ob (OB-WPH) and wild-type mice (WT-WPH) compared with vehicle control (OB and WT groups) using a 2 × 2 factorial design, genotype × treatment. BRIN-BD11 cells showed a robust and reproducible dose-dependent insulinotropic effect of WPH (from 0.01 to 5.00 g/L). WPH bioactive constituents were permeable across Caco-2 cell monolayers. In the OB-WPH and WT-WPH groups, WPH administration improved glucose clearance after a glucose challenge (2 g/kg body weight), as indicated by differences in the area under curves (AUCs) (P ≤ 0.05). The basal plasma glucose concentration was not affected by WPH treatment in either genotype. The plasma insulin concentration was lower in the OB-WPH than in the OB group (P ≤ 0.005) but was similar between the WT and WT-WPH groups; the interaction genotype × treatment was significant (P ≤ 0.005). Insulin release from pancreatic islets isolated from the OB-WPH group was greater (P ≤ 0.005) than that from the OB group but did not differ between theWT-WPH and WT groups; the interaction genotype × treatment was not significant. In conclusion, an 8-wk oral administration of WPH improved blood glucose clearance, reduced hyperinsulinemia, and restored the pancreatic islet capacity to secrete insulin in response to glucose in ob/ob mice. Hence, it may be useful in diabetes management.
AB - Whey protein hydrolysates (WPHs) represent novel antidiabetic agents that affect glycemia in animals and humans, but little is known about their insulinotropic effects. The effects of a WPH were analyzed in vitro on acute glucose-induced insulin secretion in pancreatic BRIN-BD11 β cells. WPH permeability across Caco-2 cell monolayers was determined in a 2-tiered intestinal model. WPH effects on insulin resistance were studied in vivo following an 8-wk oral ingestion (100mg/kg body weight) by ob/ob (OB-WPH) and wild-type mice (WT-WPH) compared with vehicle control (OB and WT groups) using a 2 × 2 factorial design, genotype × treatment. BRIN-BD11 cells showed a robust and reproducible dose-dependent insulinotropic effect of WPH (from 0.01 to 5.00 g/L). WPH bioactive constituents were permeable across Caco-2 cell monolayers. In the OB-WPH and WT-WPH groups, WPH administration improved glucose clearance after a glucose challenge (2 g/kg body weight), as indicated by differences in the area under curves (AUCs) (P ≤ 0.05). The basal plasma glucose concentration was not affected by WPH treatment in either genotype. The plasma insulin concentration was lower in the OB-WPH than in the OB group (P ≤ 0.005) but was similar between the WT and WT-WPH groups; the interaction genotype × treatment was significant (P ≤ 0.005). Insulin release from pancreatic islets isolated from the OB-WPH group was greater (P ≤ 0.005) than that from the OB group but did not differ between theWT-WPH and WT groups; the interaction genotype × treatment was not significant. In conclusion, an 8-wk oral administration of WPH improved blood glucose clearance, reduced hyperinsulinemia, and restored the pancreatic islet capacity to secrete insulin in response to glucose in ob/ob mice. Hence, it may be useful in diabetes management.
UR - http://www.scopus.com/inward/record.url?scp=84879486166&partnerID=8YFLogxK
U2 - 10.3945/jn.113.174912
DO - 10.3945/jn.113.174912
M3 - Article
C2 - 23658425
AN - SCOPUS:84879486166
SN - 0022-3166
VL - 143
SP - 1109
EP - 1114
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 7
ER -