Accurate and dynamic predictive model for better prediction in medicine and healthcare

H. O. Alanazi, A. H. Abdullah, K. N. Qureshi, A. S. Ismail

Research output: Contribution to journalArticlepeer-review

Abstract

Introduction: Information and communication technologies (ICTs) have changed the trend into new integrated operations and methods in all fields of life. The health sector has also adopted new technologies to improve the systems and provide better services to customers. Predictive models in health care are also influenced from new technologies to predict the different disease outcomes. However, still, existing predictive models have suffered from some limitations in terms of predictive outcomes performance. Aims and objectives: In order to improve predictive model performance, this paper proposed a predictive model by classifying the disease predictions into different categories. To achieve this model performance, this paper uses traumatic brain injury (TBI) datasets. TBI is one of the serious diseases worldwide and needs more attention due to its seriousness and serious impacts on human life. Conclusion: The proposed predictive model improves the predictive performance of TBI. The TBI data set is developed and approved by neurologists to set its features. The experiment results show that the proposed model has achieved significant results including accuracy, sensitivity, and specificity.

Original languageEnglish
Pages (from-to)501-513
Number of pages13
JournalIrish Journal of Medical Science
Volume187
Issue number2
DOIs
Publication statusPublished - 1 May 2018
Externally publishedYes

Keywords

  • Accuracy
  • Features
  • Outcomes
  • Prediction
  • Predictive models
  • Sensitivity
  • Specificity
  • Traumatic brain injury

Fingerprint

Dive into the research topics of 'Accurate and dynamic predictive model for better prediction in medicine and healthcare'. Together they form a unique fingerprint.

Cite this