TY - JOUR
T1 - Activity of Protein Kinase A in the Frontal Cortex in Schizophrenia
AU - Sahay, Smita
AU - Henkel, Nicholas Daniel
AU - Vargas, Christina Flora-Anabelle
AU - McCullumsmith, Robert Erne
AU - O'Donovan, Sinead Marie
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2024/1
Y1 - 2024/1
N2 - Schizophrenia is a serious cognitive disorder characterized by disruptions in neurotransmission, a process requiring the coordination of multiple kinase-mediated signaling events. Evidence suggests that the observed deficits in schizophrenia may be due to imbalances in kinase activity that propagate through an intracellular signaling network. Specifically, 3'-5'-cyclic adenosine monophosphate (cAMP)-associated signaling pathways are coupled to the activation of neurotransmitter receptors and modulate cellular functions through the activation of protein kinase A (PKA), an enzyme whose function is altered in the frontal cortex in schizophrenia. In this study, we measured the activity of PKA in human postmortem anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) tissue from schizophrenia and age- and sex-matched control subjects. No significant differences in PKA activity were observed in male and female individuals in either brain region; however, correlation analyses indicated that PKA activity in the ACC may be influenced by tissue pH in all subjects and by age and tissue pH in females. Our data provide novel insights into the function of PKA in the ACC and DLPFC in schizophrenia.
AB - Schizophrenia is a serious cognitive disorder characterized by disruptions in neurotransmission, a process requiring the coordination of multiple kinase-mediated signaling events. Evidence suggests that the observed deficits in schizophrenia may be due to imbalances in kinase activity that propagate through an intracellular signaling network. Specifically, 3'-5'-cyclic adenosine monophosphate (cAMP)-associated signaling pathways are coupled to the activation of neurotransmitter receptors and modulate cellular functions through the activation of protein kinase A (PKA), an enzyme whose function is altered in the frontal cortex in schizophrenia. In this study, we measured the activity of PKA in human postmortem anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) tissue from schizophrenia and age- and sex-matched control subjects. No significant differences in PKA activity were observed in male and female individuals in either brain region; however, correlation analyses indicated that PKA activity in the ACC may be influenced by tissue pH in all subjects and by age and tissue pH in females. Our data provide novel insights into the function of PKA in the ACC and DLPFC in schizophrenia.
U2 - 10.3390/brainsci14010013
DO - 10.3390/brainsci14010013
M3 - Article
C2 - 38248228
SN - 2076-3425
VL - 14
JO - Brain Sciences
JF - Brain Sciences
IS - 1
M1 - 13
ER -