TY - JOUR
T1 - Agent-based null models for examining experimental social interaction networks
AU - Fennell, Susan C.
AU - Gleeson, James P.
AU - Quayle, Michael
AU - Durrheim, Kevin
AU - Burke, Kevin
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - We consider the analysis of temporal data arising from online interactive social experiments, which is complicated by the fact that classical independence assumptions about the observations are not satisfied. Therefore, we propose an approach that compares the output of a fitted (linear) model from the observed interaction data to that generated by an assumed agent-based null model. This allows us to discover, for example, the extent to which the structure of social interactions differs from that of random interactions. Moreover, we provide network visualisations that identify the extent of ingroup favouritism and reciprocity as well as particular individuals whose behaviour differs markedly from the norm. We specifically consider experimental data collected via the novel Virtual Interaction APPLication (VIAPPL). We find that ingroup favouritism and reciprocity are present in social interactions observed on this platform, and that these behaviours strengthen over time. Note that, while our proposed methodology was developed with VIAPPL in mind, its potential usage extends to any type of social interaction data.
AB - We consider the analysis of temporal data arising from online interactive social experiments, which is complicated by the fact that classical independence assumptions about the observations are not satisfied. Therefore, we propose an approach that compares the output of a fitted (linear) model from the observed interaction data to that generated by an assumed agent-based null model. This allows us to discover, for example, the extent to which the structure of social interactions differs from that of random interactions. Moreover, we provide network visualisations that identify the extent of ingroup favouritism and reciprocity as well as particular individuals whose behaviour differs markedly from the norm. We specifically consider experimental data collected via the novel Virtual Interaction APPLication (VIAPPL). We find that ingroup favouritism and reciprocity are present in social interactions observed on this platform, and that these behaviours strengthen over time. Note that, while our proposed methodology was developed with VIAPPL in mind, its potential usage extends to any type of social interaction data.
UR - http://www.scopus.com/inward/record.url?scp=85151350555&partnerID=8YFLogxK
U2 - 10.1038/s41598-023-32295-z
DO - 10.1038/s41598-023-32295-z
M3 - Article
C2 - 37002286
AN - SCOPUS:85151350555
SN - 2045-2322
VL - 13
SP - 5249
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 5249
ER -