TY - GEN
T1 - An experimental investigation of flow fields within miniature scale centrifugal pumps
AU - Kearney, D.
AU - Punch, J.
AU - Grimes, R.
PY - 2006
Y1 - 2006
N2 - Thermal management has become a key point in the development of contemporary electronics systems. It is evident that heat fluxes are currently approaching the limits of conventional forced air cooling, and that liquid technologies are now under consideration. The objective of this paper is to investigate the flow fields within a miniature scale centrifugal pump in order to determine velocity profiles describing the flow. The experimental setup consisted of a hydrodynamic test bed constructed to measure the pressure-flow characteristic of a centrifugal pump with a rated volumetric flow of 9 l/min. The impeller diameter of the pump under consideration was 34.3mm, and the characterisation experiments were carried out at a constant impeller speed. Particle-Image Velocimetry (PIV) was used to measure velocity profiles within the volute section of the pump. Synchronised velocity profiles are illustrated for three operating points on the pump characteristic curve. A hydrodynamic analysis of the velocity vectors at the impeller tip is also included, and pump model verification is then discussed based on the comparison between the theoretical predictions and the PIV data.
AB - Thermal management has become a key point in the development of contemporary electronics systems. It is evident that heat fluxes are currently approaching the limits of conventional forced air cooling, and that liquid technologies are now under consideration. The objective of this paper is to investigate the flow fields within a miniature scale centrifugal pump in order to determine velocity profiles describing the flow. The experimental setup consisted of a hydrodynamic test bed constructed to measure the pressure-flow characteristic of a centrifugal pump with a rated volumetric flow of 9 l/min. The impeller diameter of the pump under consideration was 34.3mm, and the characterisation experiments were carried out at a constant impeller speed. Particle-Image Velocimetry (PIV) was used to measure velocity profiles within the volute section of the pump. Synchronised velocity profiles are illustrated for three operating points on the pump characteristic curve. A hydrodynamic analysis of the velocity vectors at the impeller tip is also included, and pump model verification is then discussed based on the comparison between the theoretical predictions and the PIV data.
KW - Centrifugal pumps
KW - Liquid cooling
KW - Thermal management
UR - http://www.scopus.com/inward/record.url?scp=84920629447&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/record.url?scp=85196513084&partnerID=8YFLogxK
U2 - 10.1115/IMECE2006-14283
DO - 10.1115/IMECE2006-14283
M3 - Conference contribution
AN - SCOPUS:85196513084
SN - 0791837904
SN - 9780791837900
T3 - American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED
BT - Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Fluids Engineering Division
PB - American Society of Mechanical Engineers (ASME)
T2 - 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006
Y2 - 5 November 2006 through 10 November 2006
ER -