TY - JOUR
T1 - An experimental investigation of heat transfer enhancement mechanisms in microencapsulated phase-change material slurry flows
AU - Howard, James A.
AU - Walsh, Patrick A.
PY - 2013/1/1
Y1 - 2013/1/1
N2 - This article investigates laminar heat transfer characteristic of two-phase microencapsulated phase-change material (MPCM) suspension flows within minichannels under a constant wall heat flux boundary. Capsules containing paraffin wax with phase-change temperature between 36.1C and 38.1C are examined and found to be well suited for electronics cooling applications using liquid cold plate technologies. In particular, it is shown that the large thermal capacity of MPCM slurries around the phase-change temperature can lead toward greater isothermality of isoflux systems, a characteristic of significant interest to telecommunication, laser and biomedical applications. The principal focus of the study is to examine heat transfer characteristics within standard tube flow geometries, quantify the heat transfer augmentation/degradation observed, and finally, elucidate the mechanisms from which these result. Through the study volume concentrations of the MPCM slurry were varied between 0% and 30.2%. High-resolution local heat transfer measurements were obtained using infrared thermography and results presented in terms of local Nusselt number versus inverse Graetz parameter. These spanned both the thermal entrance and the fully developed flow regions with inverse Graetz number ranging from 10 3 to 10. Results show that significant heat transfer enhancements are attainable via the use of MPCM slurries over conventional single-phase coolants. Overall, the study highlights mechanisms that lead to significant heat transfer enhancements in heat exchange devices employing microencapsulated phase-change material slurries.
AB - This article investigates laminar heat transfer characteristic of two-phase microencapsulated phase-change material (MPCM) suspension flows within minichannels under a constant wall heat flux boundary. Capsules containing paraffin wax with phase-change temperature between 36.1C and 38.1C are examined and found to be well suited for electronics cooling applications using liquid cold plate technologies. In particular, it is shown that the large thermal capacity of MPCM slurries around the phase-change temperature can lead toward greater isothermality of isoflux systems, a characteristic of significant interest to telecommunication, laser and biomedical applications. The principal focus of the study is to examine heat transfer characteristics within standard tube flow geometries, quantify the heat transfer augmentation/degradation observed, and finally, elucidate the mechanisms from which these result. Through the study volume concentrations of the MPCM slurry were varied between 0% and 30.2%. High-resolution local heat transfer measurements were obtained using infrared thermography and results presented in terms of local Nusselt number versus inverse Graetz parameter. These spanned both the thermal entrance and the fully developed flow regions with inverse Graetz number ranging from 10 3 to 10. Results show that significant heat transfer enhancements are attainable via the use of MPCM slurries over conventional single-phase coolants. Overall, the study highlights mechanisms that lead to significant heat transfer enhancements in heat exchange devices employing microencapsulated phase-change material slurries.
UR - http://www.scopus.com/inward/record.url?scp=84867471070&partnerID=8YFLogxK
U2 - 10.1080/01457632.2013.703558
DO - 10.1080/01457632.2013.703558
M3 - Article
AN - SCOPUS:84867471070
SN - 0145-7632
VL - 34
SP - 223
EP - 234
JO - Heat Transfer Engineering
JF - Heat Transfer Engineering
IS - 2-3
ER -