Analysis of the Lorenz Equations for Large r

Research output: Contribution to journalArticlepeer-review

Abstract

In the limit of large r, the Lorenz equations become "almost" conservative. In this limit, one can use the method of averaging (or some equivalent) to obtain a set of two autonomous differential equations for two slowly varying amplitude functions B and D. A stable fixed point of these equations represents the stable periodic solution which is observed at large r. There is an invariant line B = D on which the method breaks down and the averaged equations are no longer valid. In this paper we show how to extend the validity of the analysis by Poincaré mapping B and D across this line. This extended analysis provides (in principl) a complete recipe for constructing approximate solutions, and shows how a strange invariant set can occur in connection with an essentially analytically constructed two-dimensional mapping.

Original languageEnglish
Pages (from-to)215-233
Number of pages19
JournalStudies in Applied Mathematics
Volume70
Issue number3
DOIs
Publication statusPublished - 1 Jun 1984
Externally publishedYes

Fingerprint

Dive into the research topics of 'Analysis of the Lorenz Equations for Large r'. Together they form a unique fingerprint.

Cite this