Behaviour of meat and bonemeal/peat pellets in a bench scale fluidised bed combustor

K. McDonnell, J. Desmond, J. J. Leahy, R. Howard-Hildige, S. Ward

Research output: Contribution to journalArticlepeer-review

Abstract

As a result of the recent Bovine Spongiform Encephalopathy crisis in the European beef industry, safe animal by-product disposal is currently being addressed. One such disposal option is the combustion of by-product material such as meat and bone meal (MBM) in a fluidised bed combustor (FBC) for the purpose of energy recovery. Two short series of combustion tests were conducted on a FBC (10 cm diameter) at the University of Twente, the Netherlands. In the first series, pellets (10 mm in diameter and approximately 10 mm in lenght) were made from a mixture of MBM and milled peat, at MBM inclusion rates of 0%, 30%, 50%, 70% and 100%. In the second series of tests, the pellets were commercially made and were 4.8 mm in diameter and between 12 and 15 mm long. These pellets had a weight of about 0.3 g and contained 0%, 25%, 35%, 50% and 100% MBM inclusion with the peat. Both sets of pellets were combusted at 880°C. The residence times in the FBC varied from 300 s (25% MBM inclusion) to 120 s (100% MBM inclusion) for the first series of pellets. Increasing compaction pressure increased the residence time. For the second series of pellets, the residence time varied from about 300 s (25% MBM inclusion) to 100 s (100% MBM inclusion). MBM was found to be a volatile product (about 65%) and co-firing it with milled peat in a pelleted feed format reduces its volatile intensity. Pellets made from 100% bone based meal remained intact within the bed and are thought to have undergone a process of calcination during combustion. A maximum MBM inclusion rate of 35% with milled peat in a pellet is recommended from this work.

Original languageEnglish
Pages (from-to)81-90
Number of pages10
JournalEnergy
Volume26
Issue number1
DOIs
Publication statusPublished - 2001

Fingerprint

Dive into the research topics of 'Behaviour of meat and bonemeal/peat pellets in a bench scale fluidised bed combustor'. Together they form a unique fingerprint.

Cite this