TY - JOUR
T1 - CD4+ T cell activation, function, and metabolism are inhibited by low concentrations of DMSO
AU - Holthaus, Lisa
AU - Lamp, Daniel
AU - Gavrisan, Anita
AU - Sharma, Virag
AU - Ziegler, Anette Gabriele
AU - Jastroch, Martin
AU - Bonifacio, Ezio
N1 - Publisher Copyright:
© 2018 The Authors
PY - 2018/12
Y1 - 2018/12
N2 - Dimethyl sulfoxide (DMSO) is a polar organic solvent used in a wide range of biological applications. DMSO is routinely used as a cryoprotectant for long-term cell freezing as well as to dissolve peptides and drugs for immune cell functional assays. Here, human CD4+ T cell activation, cytokine production, proliferation, and metabolism were investigated after stimulation in the presence of 0.01% to 1%, DMSO, representing concentrations commonly used in vitro. Surface expression of the activation markers CD69, CD25 and CD154 after polyclonal activation of CD4+ T cells was inhibited by 0.25% or higher concentrations of DMSO. The frequencies of IL-21+, IL-4+, and IL-22+ CD4+ T cells, following polyclonal activation were variably inhibited by DMSO at concentrations ranging from 0.25% to 1%, whereas IFNγ+ cells were unaffected. CD4+ T cell proliferation after anti-CD3 or antigen stimulation was inhibited by 0.5% DMSO and abolished by 1% DMSO. After polyclonal stimulation, glucose uptake was inhibited in the presence of 1% DMSO, but only minor effects on CD4+ T cell respiration were observed. Consistent with the immune effects, the gene expression of early signaling and activation pathways were inhibited in CD4+ T cells in the presence of 1% DMSO. Our study revealed that DMSO at concentrations generally used for in vitro studies of T cells impacts multiple features of T cell function. Therefore, we urge care when adding DMSO-containing preparations to T cell cultures.
AB - Dimethyl sulfoxide (DMSO) is a polar organic solvent used in a wide range of biological applications. DMSO is routinely used as a cryoprotectant for long-term cell freezing as well as to dissolve peptides and drugs for immune cell functional assays. Here, human CD4+ T cell activation, cytokine production, proliferation, and metabolism were investigated after stimulation in the presence of 0.01% to 1%, DMSO, representing concentrations commonly used in vitro. Surface expression of the activation markers CD69, CD25 and CD154 after polyclonal activation of CD4+ T cells was inhibited by 0.25% or higher concentrations of DMSO. The frequencies of IL-21+, IL-4+, and IL-22+ CD4+ T cells, following polyclonal activation were variably inhibited by DMSO at concentrations ranging from 0.25% to 1%, whereas IFNγ+ cells were unaffected. CD4+ T cell proliferation after anti-CD3 or antigen stimulation was inhibited by 0.5% DMSO and abolished by 1% DMSO. After polyclonal stimulation, glucose uptake was inhibited in the presence of 1% DMSO, but only minor effects on CD4+ T cell respiration were observed. Consistent with the immune effects, the gene expression of early signaling and activation pathways were inhibited in CD4+ T cells in the presence of 1% DMSO. Our study revealed that DMSO at concentrations generally used for in vitro studies of T cells impacts multiple features of T cell function. Therefore, we urge care when adding DMSO-containing preparations to T cell cultures.
UR - http://www.scopus.com/inward/record.url?scp=85053147551&partnerID=8YFLogxK
U2 - 10.1016/j.jim.2018.09.004
DO - 10.1016/j.jim.2018.09.004
M3 - Article
C2 - 30201392
AN - SCOPUS:85053147551
SN - 0022-1759
VL - 463
SP - 54
EP - 60
JO - Journal of Immunological Methods
JF - Journal of Immunological Methods
ER -