Abstract
The structure of cytochrome c552 (Cyt-c552) from Thermus thermophilus shows many differences to other c-type cytochromes. The rich lysine domain close to the heme does not exist in this cytochrome, allowing us to postulate that the interaction with its redox partner must be different to the cytochrome c/cytochrome c oxidase interaction. We report a study of Cyt-c552 adsorbed on self-assembled monolayers (SAMs) of functionalized alkanethiols used to mimic the chemical properties of its redox partner (ba3-oxydase). Hydrophilic (-COOH), polar (-OH), hydrophobic (-CH3), and mixed (-OH/-CH3) SAMs grafted on roughened silver electrodes were characterized by X-ray photoelectron spectroscopy. Surface enhanced resonance Roman spectroscopy (SERRS) was employed to determine the structure and the redox properties (E° and number of transferred electron) of the heme of Cyt-c552 adsorbed on roughened silver electrodes coated by the different SAMs. The surface that most closely models the environment of the ba3-oxidase is a mixed SAM formed by 50% polar [Ag-(CH2)5-CH2OH] and 50% hydrophobic [Ag-(CH2)5-CH3] alkanethiols. Only the native form B1(6cLS) of Cyt-c552 is detected by SERRS when the protein is adsorbed on such a surface that promotes a protein orientation favorable for the electron transfer (number of transferred electron = 1). We shall discuss the differences and similarities of the electron-transfer mechanism of Cyt-c 552 compared to cyt-c.
Original language | English |
---|---|
Pages (from-to) | 407-418 |
Number of pages | 12 |
Journal | Biopolymers |
Volume | 81 |
Issue number | 5 |
DOIs | |
Publication status | Published - 5 Apr 2006 |
Externally published | Yes |
Keywords
- Cytochrome c
- Self-assembled monolayers
- Surface enhanced resonance Raman spectroscopy
- X-ray photoelectron spectroscopy