TY - JOUR
T1 - Comparing Cycling and Rate Response of SnO2 Macroporous Anodes in Lithium-Ion and Sodium-Ion Batteries
AU - Grant, Alex
AU - Carroll, Aoife
AU - Zhang, Yan
AU - Gulzar, Umair
AU - Ahad, Syed Abdul
AU - Geaney, Hugh
AU - O’Dwyer, Colm
N1 - Publisher Copyright:
© 2023 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
PY - 2023
Y1 - 2023
N2 - Tin oxide (SnO2) is a useful anode material due to its high capacity (1493 mAh g−1 and 1378 mAh g−1 vs Li/Li+ and vs Na/Na+, respectively) and natural abundance (tin is one of the thirty most abundant elements on Earth). Unfortunately, only moderate electrical conductivity and significant volume expansion of up to 300% for Li-ion, and as much as 520% for Na-ion can occur. Here, we use an ordered macroporous interconnected inverse opal (IO) architectures to enhance rate capability, structural integrity, and gravimetric capacity, without conductive additives and binders. Excellent capacity retention is shown during cycling vs Na/Na+ relative to Li/Li+. Cyclic voltammetry (CV) analysis, galvanostatic cycling, and differential capacity analysis extracted from rate performance testing evidence the irreversibility of the oxidation of metallic Sn to SnO2 during charge. This behavior allows for a very stable electrode during cycling at various rates. A stable voltage profile and rate performance is demonstrated for both systems. In a Na-ion half cell, the SnO2 retained >76% capacity after 100 cycles, and a similar retention after rate testing.
AB - Tin oxide (SnO2) is a useful anode material due to its high capacity (1493 mAh g−1 and 1378 mAh g−1 vs Li/Li+ and vs Na/Na+, respectively) and natural abundance (tin is one of the thirty most abundant elements on Earth). Unfortunately, only moderate electrical conductivity and significant volume expansion of up to 300% for Li-ion, and as much as 520% for Na-ion can occur. Here, we use an ordered macroporous interconnected inverse opal (IO) architectures to enhance rate capability, structural integrity, and gravimetric capacity, without conductive additives and binders. Excellent capacity retention is shown during cycling vs Na/Na+ relative to Li/Li+. Cyclic voltammetry (CV) analysis, galvanostatic cycling, and differential capacity analysis extracted from rate performance testing evidence the irreversibility of the oxidation of metallic Sn to SnO2 during charge. This behavior allows for a very stable electrode during cycling at various rates. A stable voltage profile and rate performance is demonstrated for both systems. In a Na-ion half cell, the SnO2 retained >76% capacity after 100 cycles, and a similar retention after rate testing.
UR - http://www.scopus.com/inward/record.url?scp=85180012376&partnerID=8YFLogxK
U2 - 10.1149/1945-7111/ad0ff5
DO - 10.1149/1945-7111/ad0ff5
M3 - Article
AN - SCOPUS:85180012376
SN - 0013-4651
VL - 170
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 12
M1 - 120505
ER -