TY - JOUR
T1 - Conversion of Palmitic Acid Over Bi-functional Ni/ZSM-5 Catalyst
T2 - Effect of Stoichiometric Ni/Al Molar Ratio
AU - Ojeda, Manuel
AU - Osterman, Nika
AU - Dražić, Goran
AU - Fele Žilnik, Ljudmila
AU - Meden, Anton
AU - Kwapinski, Witold
AU - Balu, Alina M.
AU - Likozar, Blaž
AU - Novak Tušar, Nataša
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - The conversion of the biomass-derived lipid, lignocellulosic and carbohydrate resources into renewable platform intermediates, chemicals and biofuels has been lately increasing in interest. The mechanistic reaction pathways, like hydro-deoxygenation, decarboxylation and hydrocracking, of the selected palmitic acid, as a model fatty acid, over Ni/ZSM-5 zeolite catalysts were studied. The ZSM-5 material with different Al/Si molar ratios was synthesized via a green template-free hydrothermal synthesis procedure, treated and subsequent functionalised with various Ni metal loadings. However, Ni/Al molar ratio was kept stoichiometric (Ni/Al = 0.5). The characteristic physicochemical properties of composite catalysts were studied by numerous characterization techniques, such as X-ray powder diffraction (XRD), scanning-, as well as high-resolution transmission electron microscopy (SEM/HRTEM), and X-ray photoelectron spectroscopy (XPS). NiO with an average particle size of 10–20 nm was found on ZSM-5 support. The relative Ni/Al atom fraction in Ni/ZSM-5 systems influenced their Lewis/Brønsted acidic sites, as well as the external exposed area of prepared heterogeneous structures. Furthermore, the mentioned morphological parameters affected predominant catalytic routes. Species’ production mechanism, as a consequence of Lewis/Brønsted centre weak/strong acidity, as well as their integral concentration, was proposed, mirroring the observed process kinetics, selectivity and turnover. It was demonstrated that the main obtained products were esters, aldehydes, alcohols, hydrocarbons and gases (CO2, CO…), produced by deoxygenation (e.g. decarbonylation), hydrogenation and cracking, less, though, through isomerisation.
AB - The conversion of the biomass-derived lipid, lignocellulosic and carbohydrate resources into renewable platform intermediates, chemicals and biofuels has been lately increasing in interest. The mechanistic reaction pathways, like hydro-deoxygenation, decarboxylation and hydrocracking, of the selected palmitic acid, as a model fatty acid, over Ni/ZSM-5 zeolite catalysts were studied. The ZSM-5 material with different Al/Si molar ratios was synthesized via a green template-free hydrothermal synthesis procedure, treated and subsequent functionalised with various Ni metal loadings. However, Ni/Al molar ratio was kept stoichiometric (Ni/Al = 0.5). The characteristic physicochemical properties of composite catalysts were studied by numerous characterization techniques, such as X-ray powder diffraction (XRD), scanning-, as well as high-resolution transmission electron microscopy (SEM/HRTEM), and X-ray photoelectron spectroscopy (XPS). NiO with an average particle size of 10–20 nm was found on ZSM-5 support. The relative Ni/Al atom fraction in Ni/ZSM-5 systems influenced their Lewis/Brønsted acidic sites, as well as the external exposed area of prepared heterogeneous structures. Furthermore, the mentioned morphological parameters affected predominant catalytic routes. Species’ production mechanism, as a consequence of Lewis/Brønsted centre weak/strong acidity, as well as their integral concentration, was proposed, mirroring the observed process kinetics, selectivity and turnover. It was demonstrated that the main obtained products were esters, aldehydes, alcohols, hydrocarbons and gases (CO2, CO…), produced by deoxygenation (e.g. decarbonylation), hydrogenation and cracking, less, though, through isomerisation.
KW - Bifunctional Ni/ZSM-5 catalyst
KW - Cracking with deoxygenation
KW - Palmitic acid model compound
KW - Reaction pathway mechanism
KW - Stoichiometric Ni/Al molar ratio
KW - Waste edible oil
UR - http://www.scopus.com/inward/record.url?scp=85052843031&partnerID=8YFLogxK
U2 - 10.1007/s11244-018-1046-7
DO - 10.1007/s11244-018-1046-7
M3 - Article
AN - SCOPUS:85052843031
SN - 1022-5528
VL - 61
SP - 1757
EP - 1768
JO - Topics in Catalysis
JF - Topics in Catalysis
IS - 15-17
ER -