TY - JOUR
T1 - Cross-Linking CdSO4-Type Nets with Hexafluorosilicate Anions to Form an Ultramicroporous Material for Efficient C2H2/CO2 and C2H2/C2H4 Separation
AU - Li, Dan
AU - Gao, Mei Yan
AU - Deng, Cheng Hua
AU - Li, Guo Bi
AU - Qin, Shao Jie
AU - Yang, Qing Yuan
AU - Song, Bai Qiao
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2024/9/19
Y1 - 2024/9/19
N2 - A 44.610.8 topology hybrid ultramicroporous material (HUM), {[Cu1.5F(SiF6)(L)2.5]·G}n, (L = 4,4′-bisimidazolylbiphenyl, G = guest molecules), 1, formed by cross-linking interpenetrated 3D four-connected CdSO4-type nets with hexafluorosilicate anions is synthesized and evaluated in the context of gas sorption and separation herein. 1 is the first HUM functionalized with two different types of fluorinated sites (SiF62− and F− anions) lining along the pore surface. The optimal pore size (≈5 Å) combining mixed and high-density electronegative fluorinated sites enable 1 to preferentially adsorb C2H2 over CO2 and C2H4 by hydrogen bonding interactions with a high C2H2 isosteric heat of adsorption (Qst) of ≈42.3 kJ mol−1 at zero loading. The pronounced discriminatory sorption behaviors lead to excellent separation performance for C2H2/CO2 and C2H2/C2H4 that surpasses many well-known sorbents. Dynamic breakthrough experiments are conducted to confirm the practical separation capability of 1, which reveal an impressive separation factor of 6.1 for equimolar C2H2/CO2 mixture. Furthermore, molecular simulation and density functional theory (DFT) calculations validate the strong binding of C2H2 stems from the chelating fix of C2H2 between SiF62− anion and coordinated F− anion.
AB - A 44.610.8 topology hybrid ultramicroporous material (HUM), {[Cu1.5F(SiF6)(L)2.5]·G}n, (L = 4,4′-bisimidazolylbiphenyl, G = guest molecules), 1, formed by cross-linking interpenetrated 3D four-connected CdSO4-type nets with hexafluorosilicate anions is synthesized and evaluated in the context of gas sorption and separation herein. 1 is the first HUM functionalized with two different types of fluorinated sites (SiF62− and F− anions) lining along the pore surface. The optimal pore size (≈5 Å) combining mixed and high-density electronegative fluorinated sites enable 1 to preferentially adsorb C2H2 over CO2 and C2H4 by hydrogen bonding interactions with a high C2H2 isosteric heat of adsorption (Qst) of ≈42.3 kJ mol−1 at zero loading. The pronounced discriminatory sorption behaviors lead to excellent separation performance for C2H2/CO2 and C2H2/C2H4 that surpasses many well-known sorbents. Dynamic breakthrough experiments are conducted to confirm the practical separation capability of 1, which reveal an impressive separation factor of 6.1 for equimolar C2H2/CO2 mixture. Furthermore, molecular simulation and density functional theory (DFT) calculations validate the strong binding of C2H2 stems from the chelating fix of C2H2 between SiF62− anion and coordinated F− anion.
KW - acetylene separation
KW - crystal engineering
KW - fluorinated anion pillars
KW - guest chelating sites
KW - hybrid ultramicroporous materials
UR - http://www.scopus.com/inward/record.url?scp=85193029736&partnerID=8YFLogxK
U2 - 10.1002/smll.202402523
DO - 10.1002/smll.202402523
M3 - Article
AN - SCOPUS:85193029736
SN - 1613-6810
VL - 20
JO - Small
JF - Small
IS - 38
M1 - 2402523
ER -