TY - JOUR
T1 - Cryptic disc structures resembling ediacaran discoidal fossils from the lower Silurian Hellefjord Schist, Arctic Norway
AU - Kirkland, Christopher L.
AU - Macgabhann, Breandán A.
AU - Kirkland, Brian L.
AU - Daly, J. Stephen
N1 - Publisher Copyright:
© 2016 Kirkland et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/10
Y1 - 2016/10
N2 - The Hellefjord Schist, a volcaniclastic psammite-pelite formation in the Caledonides of Arctic Norway contains discoidal impressions and apparent tube casts that share morphological and taphonomic similarities to Neoproterozoic stem-holdfast forms. U-Pb zircon geochronology on the host metasediment indicates it was deposited between 437 ± 2 and 439 ± 3 Ma, but also indicates that an inferred basal conglomerate to this formation must be part of an older stratigraphic element, as it is cross-cut by a 546 ± 4 Ma pegmatite. These results confirm that the Hellefjord Schist is separated from underlying older Proterozoic rocks by a thrust. It has previously been argued that the Cambrian Substrate Revolution destroyed the ecological niches that the Neoproterozoic frond-holdfasts organisms occupied. However, the discovery of these fossils in Silurian rocks demonstrates that the environment and substrate must have been similar enough to Neoproterozoic settings that frond-holdfast bodyplans were still ecologically viable some hundred million years later.
AB - The Hellefjord Schist, a volcaniclastic psammite-pelite formation in the Caledonides of Arctic Norway contains discoidal impressions and apparent tube casts that share morphological and taphonomic similarities to Neoproterozoic stem-holdfast forms. U-Pb zircon geochronology on the host metasediment indicates it was deposited between 437 ± 2 and 439 ± 3 Ma, but also indicates that an inferred basal conglomerate to this formation must be part of an older stratigraphic element, as it is cross-cut by a 546 ± 4 Ma pegmatite. These results confirm that the Hellefjord Schist is separated from underlying older Proterozoic rocks by a thrust. It has previously been argued that the Cambrian Substrate Revolution destroyed the ecological niches that the Neoproterozoic frond-holdfasts organisms occupied. However, the discovery of these fossils in Silurian rocks demonstrates that the environment and substrate must have been similar enough to Neoproterozoic settings that frond-holdfast bodyplans were still ecologically viable some hundred million years later.
UR - http://www.scopus.com/inward/record.url?scp=84992623168&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0164071
DO - 10.1371/journal.pone.0164071
M3 - Article
C2 - 27783643
AN - SCOPUS:84992623168
SN - 1932-6203
VL - 11
SP - e0164071
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e0164071
ER -