TY - JOUR
T1 - Determination and Interpretation of the QT Interval
T2 - Comprehensive Analysis of a Large Cohort of Long QT Syndrome Patients and Controls
AU - Vink, Arja Suzanne
AU - Neumann, Benjamin
AU - Lieve, Krystien V.V.
AU - Sinner, Moritz F.
AU - Hofman, Nynke
AU - El Kadi, Soufiane
AU - Schoenmaker, Melissa H.A.
AU - Slaghekke, Hanneke M.J.
AU - De Jong, Jonas S.S.G.
AU - Clur, Sally Ann B.
AU - Blom, Nico A.
AU - Kääb, Stefan
AU - Wilde, Arthur A.M.
AU - Postema, Pieter G.
N1 - Publisher Copyright:
© 2018 American Heart Association, Inc.
PY - 2018/11/20
Y1 - 2018/11/20
N2 - Background: Long QT syndrome (LQTS) is associated with potentially fatal arrhythmias. Treatment is very effective, but its diagnosis may be challenging. Importantly, different methods are used to assess the QT interval, which makes its recognition difficult. QT experts advocate manual measurements with the tangent or threshold method. However, differences between these methods and their performance in LQTS diagnosis have not been established. We aimed to assess similarities and differences between these 2 methods for QT interval analysis to aid in accurate QT assessment for LQTS. Methods: Patients with a confirmed pathogenic variant in KCNQ1(LQT1), KCNH2(LQT2), or SCN5A(LQT3) genes and their family members were included. Genotype-positive patients were identified as LQTS cases and genotype-negative family members as controls. ECGs were analyzed with both methods, providing inter- and intrareader validity and diagnostic accuracy. Cutoff values based on control population's 95th and 99th percentiles, and LQTS-patients' 1st and 5th percentiles were established based on the method to correct for heart rate, age, and sex. Results: We included 1484 individuals from 265 families, aged 33±21 years and 55% females. In the total cohort, QTTangent was 10.4 ms shorter compared with QTThreshold (95% limits of agreement±20.5 ms, P<0.0001). For all genotypes, QTTangent was shorter than QTThreshold (P<0.0001), but this was less pronounced in LQT2. Both methods yielded a high inter- and intrareader validity (intraclass correlation coefficient >0.96), and a high diagnostic accuracy (area under the curve >0.84). Using the current guideline cutoff (QTc interval 480 ms), both methods had similar specificity but yielded a different sensitivity. QTc interval cutoff values of QTTangent were lower compared with QTThreshold and different depending on the correction for heart rate, age, and sex. Conclusion: The QT interval varies depending on the method used for its assessment, yet both methods have a high validity and can both be used in diagnosing LQTS. However, for diagnostic purposes current guideline cutoff values yield different results for these 2 methods and could result in inappropriate reassurance or treatment. Adjusted cutoff values are therefore specified for method, correction formula, age, and sex. In addition, a freely accessible online probability calculator for LQTS (www.QTcalculator.org) has been made available as an aid in the interpretation of the QT interval.
AB - Background: Long QT syndrome (LQTS) is associated with potentially fatal arrhythmias. Treatment is very effective, but its diagnosis may be challenging. Importantly, different methods are used to assess the QT interval, which makes its recognition difficult. QT experts advocate manual measurements with the tangent or threshold method. However, differences between these methods and their performance in LQTS diagnosis have not been established. We aimed to assess similarities and differences between these 2 methods for QT interval analysis to aid in accurate QT assessment for LQTS. Methods: Patients with a confirmed pathogenic variant in KCNQ1(LQT1), KCNH2(LQT2), or SCN5A(LQT3) genes and their family members were included. Genotype-positive patients were identified as LQTS cases and genotype-negative family members as controls. ECGs were analyzed with both methods, providing inter- and intrareader validity and diagnostic accuracy. Cutoff values based on control population's 95th and 99th percentiles, and LQTS-patients' 1st and 5th percentiles were established based on the method to correct for heart rate, age, and sex. Results: We included 1484 individuals from 265 families, aged 33±21 years and 55% females. In the total cohort, QTTangent was 10.4 ms shorter compared with QTThreshold (95% limits of agreement±20.5 ms, P<0.0001). For all genotypes, QTTangent was shorter than QTThreshold (P<0.0001), but this was less pronounced in LQT2. Both methods yielded a high inter- and intrareader validity (intraclass correlation coefficient >0.96), and a high diagnostic accuracy (area under the curve >0.84). Using the current guideline cutoff (QTc interval 480 ms), both methods had similar specificity but yielded a different sensitivity. QTc interval cutoff values of QTTangent were lower compared with QTThreshold and different depending on the correction for heart rate, age, and sex. Conclusion: The QT interval varies depending on the method used for its assessment, yet both methods have a high validity and can both be used in diagnosing LQTS. However, for diagnostic purposes current guideline cutoff values yield different results for these 2 methods and could result in inappropriate reassurance or treatment. Adjusted cutoff values are therefore specified for method, correction formula, age, and sex. In addition, a freely accessible online probability calculator for LQTS (www.QTcalculator.org) has been made available as an aid in the interpretation of the QT interval.
KW - long QT syndrome
UR - http://www.scopus.com/inward/record.url?scp=85058921772&partnerID=8YFLogxK
U2 - 10.1161/CIRCULATIONAHA.118.033943
DO - 10.1161/CIRCULATIONAHA.118.033943
M3 - Article
C2 - 30571576
AN - SCOPUS:85058921772
SN - 0009-7322
VL - 138
SP - 2345
EP - 2358
JO - Circulation
JF - Circulation
IS - 21
ER -