Development and characterization of 3D-printed electroconductive pHEMA-co-MAA NP-laden hydrogels for tissue engineering

Research output: Contribution to journalArticlepeer-review

Abstract

Tissue engineering (TE) continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration. In this study, we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid) (pHEMA-co-MAA) based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene) (PEDOT) and polypyrrole (PPy) nanoparticles (NPs), and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional (3D) printing. The presence of the NPs was critical as they altered the rheological properties during printing. However, all samples exhibited suitable shear thinning properties, allowing for the development of an optimized processing window for 3D printing. Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter, respectively. We observed that the NPs disrupted the gel crosslinking efficiencies, leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa. The conductivity of the printed hydrogels increased along with the NP concentration to (5.10±0.37)×10−7 S/cm. In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates. Finally, hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth. Taken together, these materials show promise for various TE strategies. Graphic abstract: (Figure presented.)

Original languageEnglish
Pages (from-to)262-276
Number of pages15
JournalBio-Design and Manufacturing
Volume7
Issue number3
DOIs
Publication statusPublished - May 2024

Keywords

  • 3D printing
  • Conductive nanoparticles
  • Hydroxyethyl methacrylate (HEMA)
  • Ultraviolet (UV) polymerization

Fingerprint

Dive into the research topics of 'Development and characterization of 3D-printed electroconductive pHEMA-co-MAA NP-laden hydrogels for tissue engineering'. Together they form a unique fingerprint.

Cite this