TY - GEN
T1 - Effective wetting and dewetting of a superhydrophobic surface under dynamic thermal conditions
AU - O'Keeffe, Niall
AU - Eason, Cormac
AU - Enright, Ryan
AU - Davies, Mark
PY - 2009
Y1 - 2009
N2 - In this paper the interfacial characteristics of a liquid flowing over a 1cm2 array of hydrophobic cylindrical micropillars located within a microchannel are investigated. The microchannel was 12mm wide and 32mm long with an average channel height of approximately 83μm Hydrophobic coating of the channel was achieved via a controlled flow of a trichlorosilane and ethanol solution. A method to remove lodged gas bubbles from a microchannel was successfully demonstrated, while maintaining the favorable Cassie-Baxter wetting state (gas/vapor layer present) of the micropillar structures. This was achieved using degassed water to dissolve low-curvature gas bubbles, while ohmically heating the silicon substrate to reassert and maintain the Cassie-Baxter wetting state of the hydrophobic micropillars. During this experimentation it was discovered that the part wetting and dewetting of a superhydrophobic (SH) surface within a microchannel could be achieved using similar methods. The onset of surface wetting (Wenzel wetting state) was achieved by pumping degassed water through the microchannel. Surface dewetting was then accomplished through substrate heating by the increase in the trapped gas layer pressure, the water vapor pressure and outgassing from the lightly degassed fluid. These reactions force the gas/vapor layer to expand laterally throughout the micropillar array, thus restoring the Cassie-Baxter wetting state. The reported results demonstrate a low-power method for effectively reversing the Wenzel wetting state of a SH surface under microchannel flow conditions and may prove to be a useful technique for manipulating fluid flow within microfluidic devices.
AB - In this paper the interfacial characteristics of a liquid flowing over a 1cm2 array of hydrophobic cylindrical micropillars located within a microchannel are investigated. The microchannel was 12mm wide and 32mm long with an average channel height of approximately 83μm Hydrophobic coating of the channel was achieved via a controlled flow of a trichlorosilane and ethanol solution. A method to remove lodged gas bubbles from a microchannel was successfully demonstrated, while maintaining the favorable Cassie-Baxter wetting state (gas/vapor layer present) of the micropillar structures. This was achieved using degassed water to dissolve low-curvature gas bubbles, while ohmically heating the silicon substrate to reassert and maintain the Cassie-Baxter wetting state of the hydrophobic micropillars. During this experimentation it was discovered that the part wetting and dewetting of a superhydrophobic (SH) surface within a microchannel could be achieved using similar methods. The onset of surface wetting (Wenzel wetting state) was achieved by pumping degassed water through the microchannel. Surface dewetting was then accomplished through substrate heating by the increase in the trapped gas layer pressure, the water vapor pressure and outgassing from the lightly degassed fluid. These reactions force the gas/vapor layer to expand laterally throughout the micropillar array, thus restoring the Cassie-Baxter wetting state. The reported results demonstrate a low-power method for effectively reversing the Wenzel wetting state of a SH surface under microchannel flow conditions and may prove to be a useful technique for manipulating fluid flow within microfluidic devices.
UR - http://www.scopus.com/inward/record.url?scp=77952801808&partnerID=8YFLogxK
U2 - 10.1115/HT2009-88598
DO - 10.1115/HT2009-88598
M3 - Conference contribution
AN - SCOPUS:77952801808
SN - 9780791843581
T3 - Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009
SP - 517
EP - 526
BT - Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009
T2 - 2009 ASME Summer Heat Transfer Conference, HT2009
Y2 - 19 July 2009 through 23 July 2009
ER -