Enhanced centroid-based energy-efficient clustering routing protocol for serverless based wireless sensor networks

Seemab Karim, Kashif Naseer Qureshi, Ashraf Osman Ibrahim, Anas W. Abulfaraj, Kayhan Zrar Ghafoor

Research output: Contribution to journalArticlepeer-review

Abstract

Serverless computing is a new concept as cloud computing, which dynamically manages the networks and is applied in Serverless Wireless Sensor Networks (SWSN) to help the networks. These networks are becoming famous for monitoring various physical and environmental factors. Serverless computing also facilitates the networks by offering an extensive range of applications. Different applications have been designed for monitoring purposes where the sensor nodes sense the data and transmit it to the base station through single or multi-hop routing. However, existing routing protocols cannot manage the sensor nodes’ energy issues because of the complex routing processes and depleted their power before their time. Because of these limitations, the nodes close to BS continuously rely on the network for data forwarding. As a result, these nodes cause energy consumption and lead to a useless state. This paper proposes a serverless architecture and designs an Enhanced Centroid-based Energy Efficient Clustering (ECEEC) protocol for SWSN networks. The proposed serverless architecture provides automated scalability, cost-effective services, and stateless execution. In addition, the proposed protocol offers the cluster head selection and its rotation to maximize the energy efficiency in the network. Furthermore, gateway nodes are chosen in every cluster to overcome the load on the cluster head. Simulation results indicated the excellent performance of the proposed protocol as compared to the existing routing protocols concerning network lifetime and energy consumption. The proposed protocol shows better reliability with nodes failing at 650 rounds compared to 600 rounds, especially with 5 % and 10 % Cluster Heads. The proposed protocol exhibits superior energy efficiency consumption of SNs under varying CH percentages, indicating the protocol's consistent performance across different scenarios.

Original languageEnglish
Article number102067
JournalJournal of King Saud University - Computer and Information Sciences
Volume36
Issue number5
DOIs
Publication statusPublished - Jun 2024

Keywords

  • Cluster
  • Energy
  • High speed
  • Networks
  • Routing
  • Scalability
  • Serverless

Fingerprint

Dive into the research topics of 'Enhanced centroid-based energy-efficient clustering routing protocol for serverless based wireless sensor networks'. Together they form a unique fingerprint.

Cite this