TY - JOUR
T1 - Enhanced Photocatalytic Hydrogen Evolution from Water Splitting on Ta2O5/SrZrO3 Heterostructures Decorated with CuxO/RuO2 Cocatalysts
AU - Huerta-Flores, Ali Margot
AU - Ruiz-Zepeda, Francisco
AU - Eyovge, Cavit
AU - Winczewski, Jedrzej P.
AU - Vandichel, Matthias
AU - Gaberšček, Miran
AU - Boscher, Nicolas D.
AU - Gardeniers, Han J.G.E.
AU - Torres-Martínez, Leticia M.
AU - Susarrey-Arce, Arturo
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/7/20
Y1 - 2022/7/20
N2 - Photocatalytic H
2generation by water splitting is a promising alternative for producing renewable fuels. This work synthesized a new type of Ta
2O
5/SrZrO
3heterostructure with Ru and Cu (RuO
2/Cu
xO/Ta
2O
5/SrZrO
3) using solid-state chemistry methods to achieve a high H
2production of 5164 μmol g
-1h
-1under simulated solar light, 39 times higher than that produced using SrZrO
3. The heterostructure performance is compared with other Ta
2O
5/SrZrO
3heterostructure compositions loaded with RuO
2, Cu
xO, or Pt. Cu
xO is used to showcase the usage of less costly cocatalysts to produce H
2. The photocatalytic activity toward H
2by the RuO
2/Cu
xO/Ta
2O
5/SrZrO
3heterostructure remains the highest, followed by RuO
2/Ta
2O
5/SrZrO
3> Cu
xO/Ta
2O
5/SrZrO
3> Pt/Ta
2O
5/SrZrO
3> Ta
2O
5/SrZrO
3> SrZrO
3. Band gap tunability and high optical absorbance in the visible region are more prominent for the heterostructures containing cocatalysts (RuO
2or Cu
xO) and are even higher for the binary catalyst (RuO
2/Cu
xO). The presence of the binary catalyst is observed to impact the charge carrier transport in Ta
2O
5/SrZrO
3, improving the solar to hydrogen conversion efficiency. The results represent a valuable contribution to the design of SrZrO
3-based heterostructures for photocatalytic H
2production by solar water splitting.
AB - Photocatalytic H
2generation by water splitting is a promising alternative for producing renewable fuels. This work synthesized a new type of Ta
2O
5/SrZrO
3heterostructure with Ru and Cu (RuO
2/Cu
xO/Ta
2O
5/SrZrO
3) using solid-state chemistry methods to achieve a high H
2production of 5164 μmol g
-1h
-1under simulated solar light, 39 times higher than that produced using SrZrO
3. The heterostructure performance is compared with other Ta
2O
5/SrZrO
3heterostructure compositions loaded with RuO
2, Cu
xO, or Pt. Cu
xO is used to showcase the usage of less costly cocatalysts to produce H
2. The photocatalytic activity toward H
2by the RuO
2/Cu
xO/Ta
2O
5/SrZrO
3heterostructure remains the highest, followed by RuO
2/Ta
2O
5/SrZrO
3> Cu
xO/Ta
2O
5/SrZrO
3> Pt/Ta
2O
5/SrZrO
3> Ta
2O
5/SrZrO
3> SrZrO
3. Band gap tunability and high optical absorbance in the visible region are more prominent for the heterostructures containing cocatalysts (RuO
2or Cu
xO) and are even higher for the binary catalyst (RuO
2/Cu
xO). The presence of the binary catalyst is observed to impact the charge carrier transport in Ta
2O
5/SrZrO
3, improving the solar to hydrogen conversion efficiency. The results represent a valuable contribution to the design of SrZrO
3-based heterostructures for photocatalytic H
2production by solar water splitting.
KW - band alignment
KW - CuO
KW - hydrogen evolution
KW - oxide heterostructure
KW - photocatalyst
KW - RuO
KW - SrZrO
KW - TaO
UR - http://www.scopus.com/inward/record.url?scp=85134854542&partnerID=8YFLogxK
U2 - 10.1021/acsami.2c02520
DO - 10.1021/acsami.2c02520
M3 - Article
C2 - 35786845
AN - SCOPUS:85134854542
SN - 1944-8244
VL - 14
SP - 31767
EP - 31781
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 28
ER -