Abstract
Cancer genome studies of Epstein-Barr virus (EBV)-associated tumors, including lymphoepithelioma-like carcinomas (LELC) of nasopharyngeal (NPC), gastric (EBVaGC) and lung tissues, and natural killer (NK)/T-cell lymphoma (NKTCL), reveal a unique feature of genomic alterations with fewer gene mutations detected than other common cancers. It is known now that epigenetic alterations play a critical role in the pathogenesis of EBV-associated tumors. As an oncogenic virus, EBV establishes its latent and lytic infections in B-lymphoid and epithelial cells, utilizing hijacked cellular epigenetic machinery. EBV-encoded oncoproteins modulate cellular epigenetic machinery to reprogram viral and host epigenomes, especially in the early stage of infection, using host epigenetic regulators. The genome-wide epigenetic alterations further inactivate a series of tumor suppressor genes (TSG) and disrupt key cellular signaling pathways, contributing to EBV-associated cancer initiation and progression. Profiling of genome-wide CpG methylation changes (CpG methylome) have revealed a unique epigenotype of global high-grade methylation of TSGs in EBV-associated tumors. Here, we have summarized recent advances of epigenetic alterations in EBV-associated tumors (LELCs and NKTCL), highlighting the importance of epigenetic etiology in EBV-associated tumorigenesis. Epigenetic study of these EBV-associated tumors will discover valuable biomarkers for their early detection and prognosis prediction, and also develop effective epigenetic therapeutics for these cancers.
Original language | English |
---|---|
Article number | 63 |
Journal | Pathogens |
Volume | 7 |
Issue number | 3 |
DOIs | |
Publication status | Published - Sep 2018 |
Externally published | Yes |
Keywords
- CPg methylation
- Epigenetics
- Epstein-barr virus
- Gastric cancer
- Lung cancer
- Nasopharyngeal
- Natural killer (NK)/T-cell lymphoma
- Pathogenesis