Error and Correlation as fitness functions for Scaled Symbolic Regression in Grammatical Evolution

Aidan Muphy, Douglas Mota Dias, Allan De Lima, Conor Ryan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Linear scaling has greatly improved the performance of genetic programming when performing symbolic regression. Linear scaling transforms the output of an expression to reduce its error. Mean squared error and correlation have been used with scaling, often interchangeably and with assumed equivalence. We examine if this equivalence is justified by investigating the differences between an error-based metric and a correlation-based metric on 11 well-known symbolic regression benchmarks. We investigate the effect a change of fitness function has on performance, individuals size and diversity. Error-based scaling and Correlation were seen to attain equivalent performance and found solutions with very similar size and diversity on the majority of problem, but not all. In order to ascertain if the strengths of both approaches could be combined, we explored a double tournament selection strategy, where two tournaments are conducted sequentially to select individuals for recombination. Double tournament selection found smaller solutions and the best solution in five benchmarks, including finding the best solutions on both real-world dataset used in our experiments.

Original languageEnglish
Title of host publicationGECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion
PublisherAssociation for Computing Machinery, Inc
Pages607-610
Number of pages4
ISBN (Electronic)9798400701207
DOIs
Publication statusPublished - 15 Jul 2023
Event2023 Genetic and Evolutionary Computation Conference Companion, GECCO 2023 Companion - Lisbon, Portugal
Duration: 15 Jul 202319 Jul 2023

Publication series

NameGECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion

Conference

Conference2023 Genetic and Evolutionary Computation Conference Companion, GECCO 2023 Companion
Country/TerritoryPortugal
CityLisbon
Period15/07/2319/07/23

Keywords

  • Grammatical Evolution
  • Linear Scaling
  • Symbolic Regression

Fingerprint

Dive into the research topics of 'Error and Correlation as fitness functions for Scaled Symbolic Regression in Grammatical Evolution'. Together they form a unique fingerprint.

Cite this