Evaluation of a novel inorganic scintillator for applications in LDR brachytherapy using both TE-cooled and room temperature SiPMs

Michael Martyn, Wern Kam, Agnese Giaz, Simona Cometti, Romualdo Santoro, Peter Woulfe, Massimo Caccia, Sinead O'Keeffe

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This work considers the use of an optical fiber sensor, employing a Gd2O2S:Tb inorganic scintillator, for applications in LDR brachytherapy for prostate cancer. Gd2O2S:Tb is characterized by a scintillation decay time of ~500 µs, implying that each primary gamma interaction produces a series of single photons, requiring the use of adequate detectors, such as Silicon Photomultipliers (SiPMs). These devices suffer from a significant Dark Count Rate (DCR), undermining system sensitivity. This work reports the result of a feasibility study where identical SiPMs, but different packages, are compared. Specifically, a room temperature SiPM in a ceramic package and a TE-cooled SiPM in a TO8 package. In the former, the optical fiber is in direct contact with the sensor surface, while in the latter there is a separation of ~3 mm. The signal, measured as Photon Count Rate (PCR), in excess of the DCR, was measured in a water phantom at distances of 5 mm and 30 mm from an I125 source. For the TE-cooled SiPM, the DCR dropped by ~96% as expected, and the PCR dropped by ~80%, compared to the room-temperature SiPM, due to reduced light acceptance. However, incorporating an optical coupling system into the TE-cooled SiPM, to improve acceptance, resulted in sensitivity increases of 332% and 296% at distances of 5 mm and 30 mm respectively, compared to the room-temperature SiPM. It is hoped that these improvements in sensitivity, will allow for accurate monitoring of the dose-rate from LDR sources, within the clinically relevant treatment volume for prostate cancer.

Original languageEnglish
Title of host publicationOptical Sensing and Detection VII
EditorsFrancis Berghmans, Ioanna Zergioti
PublisherSPIE
ISBN (Electronic)9781510651548
DOIs
Publication statusPublished - 2022
EventOptical Sensing and Detection VII 2022 - Virtual, Online
Duration: 9 May 202215 May 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12139
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceOptical Sensing and Detection VII 2022
CityVirtual, Online
Period9/05/2215/05/22

Keywords

  • Brachytherapy
  • Optical fibers
  • SiPM
  • TE-cooled SiPM

Fingerprint

Dive into the research topics of 'Evaluation of a novel inorganic scintillator for applications in LDR brachytherapy using both TE-cooled and room temperature SiPMs'. Together they form a unique fingerprint.

Cite this