TY - JOUR
T1 - Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle
AU - Egan, Brendan
AU - Carson, Brian P.
AU - Garcia-Roves, Pablo M.
AU - Chibalin, Alexander V.
AU - Sarsfield, Fiona M.
AU - Barron, Niall
AU - McCaffrey, Noel
AU - Moyna, Niall M.
AU - Zierath, Juleen R.
AU - O'Gorman, Donal J.
PY - 2010/5
Y1 - 2010/5
N2 - Skeletal muscle contraction increases intracellular ATP turnover, calcium flux, and mechanical stress, initiating signal transduction pathways that modulate peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent transcriptional programmes. The purpose of this study was to determine if the intensity of exercise regulates PGC-1α expression in human skeletal muscle, coincident with activation of signalling cascades known to regulate PGC-1α transcription. Eight sedentary males expended 400 kcal (1674 kj) during a single bout of cycle ergometer exercise on two separate occasions at either 40% (LO) or 80% (HI) of . Skeletal muscle biopsies from the m. vastus lateralis were taken at rest and at +0, +3 and +19 h after exercise. Energy expenditure during exercise was similar between trials, but the high intensity bout was shorter in duration (LO, 69.9 ± 4.0 min; HI, 36.0 ± 2.2 min, P < 0.05) and had a higher rate of glycogen utilization (P < 0.05). PGC-1α mRNA abundance increased in an intensity-dependent manner +3 h after exercise (LO, 3.8-fold; HI, 10.2-fold, P < 0.05). AMP-activated protein kinase (AMPK) (2.8-fold, P < 0.05) and calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation (84%, P < 0.05) increased immediately after HI but not LO. p38 mitogen-activated protein kinase (MAPK) phosphorylation increased after both trials (∼2.0-fold, P < 0.05), but phosphorylation of the downstream transcription factor, activating transcription factor-2 (ATF-2), increased only after HI (2.4-fold, P < 0.05). Cyclic-AMP response element binding protein (CREB) phosphorylation was elevated at +3 h after both trials (∼80%, P < 0.05) and class IIa histone deacetylase (HDAC) phosphorylation increased only after HI (2.0-fold, P < 0.05). In conclusion, exercise intensity regulates PGC-1α mRNA abundance in human skeletal muscle in response to a single bout of exercise. This effect is mediated by differential activation of multiple signalling pathways, with ATF-2 and HDAC phosphorylation proposed as key intensity-dependent mediators.
AB - Skeletal muscle contraction increases intracellular ATP turnover, calcium flux, and mechanical stress, initiating signal transduction pathways that modulate peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent transcriptional programmes. The purpose of this study was to determine if the intensity of exercise regulates PGC-1α expression in human skeletal muscle, coincident with activation of signalling cascades known to regulate PGC-1α transcription. Eight sedentary males expended 400 kcal (1674 kj) during a single bout of cycle ergometer exercise on two separate occasions at either 40% (LO) or 80% (HI) of . Skeletal muscle biopsies from the m. vastus lateralis were taken at rest and at +0, +3 and +19 h after exercise. Energy expenditure during exercise was similar between trials, but the high intensity bout was shorter in duration (LO, 69.9 ± 4.0 min; HI, 36.0 ± 2.2 min, P < 0.05) and had a higher rate of glycogen utilization (P < 0.05). PGC-1α mRNA abundance increased in an intensity-dependent manner +3 h after exercise (LO, 3.8-fold; HI, 10.2-fold, P < 0.05). AMP-activated protein kinase (AMPK) (2.8-fold, P < 0.05) and calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation (84%, P < 0.05) increased immediately after HI but not LO. p38 mitogen-activated protein kinase (MAPK) phosphorylation increased after both trials (∼2.0-fold, P < 0.05), but phosphorylation of the downstream transcription factor, activating transcription factor-2 (ATF-2), increased only after HI (2.4-fold, P < 0.05). Cyclic-AMP response element binding protein (CREB) phosphorylation was elevated at +3 h after both trials (∼80%, P < 0.05) and class IIa histone deacetylase (HDAC) phosphorylation increased only after HI (2.0-fold, P < 0.05). In conclusion, exercise intensity regulates PGC-1α mRNA abundance in human skeletal muscle in response to a single bout of exercise. This effect is mediated by differential activation of multiple signalling pathways, with ATF-2 and HDAC phosphorylation proposed as key intensity-dependent mediators.
UR - http://www.scopus.com/inward/record.url?scp=77954070031&partnerID=8YFLogxK
U2 - 10.1113/jphysiol.2010.188011
DO - 10.1113/jphysiol.2010.188011
M3 - Article
C2 - 20308248
AN - SCOPUS:77954070031
SN - 0022-3751
VL - 588
SP - 1779
EP - 1790
JO - Journal of Physiology
JF - Journal of Physiology
IS - 10
ER -