TY - JOUR
T1 - Expression, Purification, and in vitro Enzyme Activity Assay of a Recombinant Aldehyde Dehydrogenase from Thermus thermophilus, Using an Escherichia coli Host
AU - Shortall, Kim
AU - Magner, Edmond
AU - Soulimane, Tewfik
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/5/5
Y1 - 2022/5/5
N2 - Based on previous in-depth characterisation, aldehyde dehydrogenases (ALDH) are a diverse superfamily of enzymes, in terms of both structure and function, present in all kingdoms of life. They catalyse the oxidation of an aldehyde to carboxylic acid using the cofactor nicotinamide adenine dinucleotide (phosphate) (NAD(P)+), and are often not substrate-specific, but rather have a broad range of associated biological functions, including detoxification and biosynthesis. We studied the structure of ALDHTt from Thermus thermophilus, as well as performed its biochemical characterisation. This allowed for insight into its potential substrates and biological roles. In this protocol, we describe ALDHTt heterologous expression in E. coli, purification, and activity assay (based on Shortall et al., 2021). ALDHTt was first copurified as a contaminant during caa3-type cytochrome oxidase isolation from T. thermophilus. This recombinant production system was employed for structural and biochemical analysis of wild-type and mutants, and proved efficient, yielding approximately 15–20 mg/L ALDHTt. For purification of the thermophilic his-tagged ALDHTt, heat treatment, immobilized metal affinity chromatography (IMAC), and gel filtration chromatography were used. The enzyme activity assay was performed via UV-Vis spectrophotometry, monitoring the production of reduced nicotinamide adenine dinucleotide (NADH).
AB - Based on previous in-depth characterisation, aldehyde dehydrogenases (ALDH) are a diverse superfamily of enzymes, in terms of both structure and function, present in all kingdoms of life. They catalyse the oxidation of an aldehyde to carboxylic acid using the cofactor nicotinamide adenine dinucleotide (phosphate) (NAD(P)+), and are often not substrate-specific, but rather have a broad range of associated biological functions, including detoxification and biosynthesis. We studied the structure of ALDHTt from Thermus thermophilus, as well as performed its biochemical characterisation. This allowed for insight into its potential substrates and biological roles. In this protocol, we describe ALDHTt heterologous expression in E. coli, purification, and activity assay (based on Shortall et al., 2021). ALDHTt was first copurified as a contaminant during caa3-type cytochrome oxidase isolation from T. thermophilus. This recombinant production system was employed for structural and biochemical analysis of wild-type and mutants, and proved efficient, yielding approximately 15–20 mg/L ALDHTt. For purification of the thermophilic his-tagged ALDHTt, heat treatment, immobilized metal affinity chromatography (IMAC), and gel filtration chromatography were used. The enzyme activity assay was performed via UV-Vis spectrophotometry, monitoring the production of reduced nicotinamide adenine dinucleotide (NADH).
KW - Aldehyde dehydrogenase
KW - Auto-induction media
KW - Cell culture
KW - Enzymatic activity
KW - Gel filtration chromatography
KW - Heat treatment purification
KW - Nickel affinity chromatography
KW - UV-vis spectrophotometry
UR - http://www.scopus.com/inward/record.url?scp=85131294375&partnerID=8YFLogxK
U2 - 10.21769/BioProtoc.4401
DO - 10.21769/BioProtoc.4401
M3 - Article
AN - SCOPUS:85131294375
SN - 2331-8325
VL - 12
JO - Bio-protocol
JF - Bio-protocol
IS - 9
M1 - e4401
ER -