Film thickness for two phase flow in a microchannel

Ronan Grimes, Colin King, Edmond Walsh

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The issue of contamination of micro channel surfaces by bio fluids is a significant impediment to the development of many biomedical devices. A solution to this problem is the use of a carrier fluid, which segments the bio fluid and forms a thin film between the bio fluid and the channel wall. A number of issues need to be addressed for the successful implementation of such a solution. Amongst these is the prediction of the thickness of the film of carrier fluid which forms between the bio sample and the channel wall. The Bretherton and Taylor laws relate the capillary number to the thickness of this film. This paper investigates the validity of these laws through an extensive experimental program in which a number of potential carrier fluids were used to segment aqueous droplets over a range of flow rates. The aqueous plugs were imaged using a high speed camera and their velocities were measured. Film thicknesses were calculated from the ratio of the velocity of the carrier fluid to the velocity of the aqueous plug. The paper concludes that significant discrepancies exist between measured film thicknesses and those predicted by the Bretherton and Taylor laws.

Original languageEnglish
Title of host publicationProceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Fluids Engineering Division
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)0791837904, 9780791837900
DOIs
Publication statusPublished - 2006
Event2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Chicago, IL, United States
Duration: 5 Nov 200610 Nov 2006

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED
ISSN (Print)0888-8116

Conference

Conference2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006
Country/TerritoryUnited States
CityChicago, IL
Period5/11/0610/11/06

Fingerprint

Dive into the research topics of 'Film thickness for two phase flow in a microchannel'. Together they form a unique fingerprint.

Cite this