Gene profiling analysis of ALVAC infected human monocyte derived dendritic cells

Anke Harenberg, Florine Guillaume, Elizabeth J. Ryan, Nicolas Burdin, Franca Spada

Research output: Contribution to journalArticlepeer-review

Abstract

The recombinant canarypox virus ALVAC is being extensively studied as vaccine vector for the development of new vaccine strategies against chronic infectious diseases and cancer. However, the mechanisms by which ALVAC initiates the immune response have not been completely elucidated. In order to determine the type of innate immunity triggered by ALVAC, we characterized the gene expression profile of human monocyte derived dendritic cells (MDDCs) upon ALVAC infection. These cells are permissive to poxvirus infection and play a key role in the initiation of immune responses. The majority of the genes that were up-regulated by ALVAC belong to the type I interferon signaling pathway including IRF7, STAT1, RIG-1, and MDA-5. Genes involved in the NF-κB pathway were not up-regulated. The gene encoding for the chemokine CXCL10, a direct target of the transcription factor IRF3 was among those up-regulated and DC secretion of CXCL10 following exposure to ALVAC was confirmed by ELISA. Many downstream type I interferon activated genes with anti-viral activity (PKR, Mx, ISG15 and OAS among others) were also up-regulated in response to ALVAC. Among these, ISG15 expression in its unconjugated form by Western blot analysis was demonstrated. In view of these results we propose that ALVAC induces type I interferon anti-viral innate immunity via a cytosolic pattern-recognition-receptor (PRR) sensing double-stranded DNA, through activation of IRF3 and IRF7. These findings may aid in the design of more effective ALVAC-vectored vaccines.

Original languageEnglish
Pages (from-to)5004-5013
Number of pages10
JournalVaccine
Volume26
Issue number39
DOIs
Publication statusPublished - 15 Sep 2008
Externally publishedYes

Keywords

  • ALVAC
  • Dendritic cell
  • Innate immunity
  • IRF
  • Microarray

Fingerprint

Dive into the research topics of 'Gene profiling analysis of ALVAC infected human monocyte derived dendritic cells'. Together they form a unique fingerprint.

Cite this