@inproceedings{15729fa3e183449fa442444f7fd9bc29,
title = "GeTS: Grammatical evolution based optimization of smoothing parameters in univariate time series forecasting",
abstract = "Time series forecasting is a technique that predicts future values using time as one of the dimensions. The learning process is strongly controlled by fine-tuning of various hyperparameters which is often resource extensive and requires domain knowledge. This research work focuses on automatically evolving suitable hyperparameters of time series for level, trend and seasonality components using Grammatical Evolution. The proposed Grammatical Evolution Time Series framework can accept datasets from various domains and select the appropriate parameter values based on the nature of dataset. The forecasted results are compared with a traditional grid search algorithm on the basis of error metric, efficiency and scalability.",
keywords = "Genetic Programming, Grammatical Evolution, Time Series Forecasting",
author = "Conor Ryan and Meghana Kshirsagar and Purva Chaudhari and Rushikesh Jachak",
note = "Publisher Copyright: {\textcopyright} 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved; 12th International Conference on Agents and Artificial Intelligence, ICAART 2020 ; Conference date: 22-02-2020 Through 24-02-2020",
year = "2020",
doi = "10.5220/0008963305950602",
language = "English",
series = "ICAART 2020 - Proceedings of the 12th International Conference on Agents and Artificial Intelligence",
publisher = "SciTePress",
pages = "595--602",
editor = "Ana Rocha and Luc Steels and {van den Herik}, Jaap",
booktitle = "ICAART 2020 - Proceedings of the 12th International Conference on Agents and Artificial Intelligence",
}