TY - JOUR
T1 - Green recovery and application of berry anthocyanins in functional gummies
T2 - Stability study, plasma and cellular antioxidant and anti-inflammatory activity
AU - Mohammadi, Nima
AU - Franchin, Marcelo
AU - Girotto Pressete, Carolina
AU - Maria Greggi Antunes, Lusânia
AU - Granato, Daniel
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/11
Y1 - 2024/11
N2 - This study investigates the comprehensive effects of extraction parameters, freeze-drying, and formulation on the chemical composition, colour properties, antioxidant and anti-inflammatory activities, and reactive oxygen species (ROS) generation of blackberry (BB) and elderberry (EB) extracts, as well as their incorporation into gummies. Using response surface methodology, optimal extraction conditions were identified: BB extracts showed optimal results at 325 W and 7.5 min, while EB extracts were optimal at 400 W and 5 min. The EB extracts consistently exhibited higher total phenolic content, total anthocyanin content, and antioxidant capacity than the BB extracts. Over 120 min, BB extracts demonstrated superior antioxidant potential to mitigate human plasma lipid oxidation. Both extracts displayed pH-dependent colour variations and antioxidant capacities, with EB extracts showing greater stability across a broader pH range. Freeze-drying effectively preserved antioxidant capacity, with EB extracts maintaining higher values than BB extracts. In a cellular model of oxidative stress using THP-1, both extracts were non-cytotoxic and reduced intracellular ROS generation, with EB extracts also more effectively inhibiting IL-6 secretion. When incorporated into gummies, these extracts resulted in higher phenolic and anthocyanin content than commercial counterparts, with EB gummies demonstrating superior antioxidant capacity. Sensory evaluations indicated no significant differences in taste, texture, or overall acceptability among the gummy formulations, though colour preferences tended to favour commercial gummies. This study addresses a gap by providing detailed chemical, biological, and sensory assessments of BB and EB extracts in food applications.
AB - This study investigates the comprehensive effects of extraction parameters, freeze-drying, and formulation on the chemical composition, colour properties, antioxidant and anti-inflammatory activities, and reactive oxygen species (ROS) generation of blackberry (BB) and elderberry (EB) extracts, as well as their incorporation into gummies. Using response surface methodology, optimal extraction conditions were identified: BB extracts showed optimal results at 325 W and 7.5 min, while EB extracts were optimal at 400 W and 5 min. The EB extracts consistently exhibited higher total phenolic content, total anthocyanin content, and antioxidant capacity than the BB extracts. Over 120 min, BB extracts demonstrated superior antioxidant potential to mitigate human plasma lipid oxidation. Both extracts displayed pH-dependent colour variations and antioxidant capacities, with EB extracts showing greater stability across a broader pH range. Freeze-drying effectively preserved antioxidant capacity, with EB extracts maintaining higher values than BB extracts. In a cellular model of oxidative stress using THP-1, both extracts were non-cytotoxic and reduced intracellular ROS generation, with EB extracts also more effectively inhibiting IL-6 secretion. When incorporated into gummies, these extracts resulted in higher phenolic and anthocyanin content than commercial counterparts, with EB gummies demonstrating superior antioxidant capacity. Sensory evaluations indicated no significant differences in taste, texture, or overall acceptability among the gummy formulations, though colour preferences tended to favour commercial gummies. This study addresses a gap by providing detailed chemical, biological, and sensory assessments of BB and EB extracts in food applications.
KW - Antioxidant capacity
KW - Chemical stability
KW - Circular economy
KW - Flavonoids
KW - Instrumental colour
KW - Response surface methodology
UR - http://www.scopus.com/inward/record.url?scp=85204936441&partnerID=8YFLogxK
U2 - 10.1016/j.foodres.2024.115128
DO - 10.1016/j.foodres.2024.115128
M3 - Article
AN - SCOPUS:85204936441
SN - 0963-9969
VL - 196
JO - Food Research International
JF - Food Research International
M1 - 115128
ER -