TY - JOUR
T1 - High-impact jumping mitigates the short-term effects of low energy availability on bone resorption but not formation in regularly menstruating females
T2 - A randomized control trial
AU - Hutson, Mark J.
AU - O'Donnell, Emma
AU - Brooke-Wavell, Katherine
AU - James, Lewis J.
AU - Raleigh, Conor J.
AU - Carson, Brian P.
AU - Sale, Craig
AU - Blagrove, Richard C.
N1 - Publisher Copyright:
© 2023 The Authors. Scandinavian Journal of Medicine & Science In Sports published by John Wiley & Sons Ltd.
PY - 2023/9
Y1 - 2023/9
N2 - Low energy availability (LEA) is prevalent in active individuals and negatively impacts bone turnover in young females. High-impact exercise can promote bone health in an energy efficient manner and may benefit bone during periods of LEA. Nineteen regularly menstruating females (aged 18–31 years) participated in two three-day conditions providing 15 (LEA) and 45 kcals kg fat-free mass−1 day−1 (BAL) of energy availability, each beginning 3 ± 1 days following the self-reported onset of menses. Participants either did (LEA+J, n = 10) or did not (LEA, n = 9) perform 20 high-impact jumps twice per day during LEA, with P1NP, β-CTx (circulating biomarkers of bone formation and resorption, respectively) and other markers of LEA measured pre and post in a resting and fasted state. Data are presented as estimated marginal mean ± 95% CI. P1NP was significantly reduced in LEA (71.8 ± 6.1–60.4 ± 6.2 ng mL−1, p < 0.001, d = 2.36) and LEA+J (93.9 ± 13.4–85.2 ± 12.3 ng mL−1, p < 0.001, d = 1.66), and these effects were not significantly different (time by condition interaction: p = 0.269). β-CTx was significantly increased in LEA (0.39 ± 0.09–0.46 ± 0.10 ng mL−1, p = 0.002, d = 1.11) but not in LEA+J (0.65 ± 0.08–0.65 ± 0.08 ng mL−1, p > 0.999, d = 0.19), and these effects were significantly different (time by condition interaction: p = 0.007). Morning basal bone formation rate is reduced following 3 days LEA, induced via dietary restriction, with or without high-impact jumping in regularly menstruating young females. However, high-impact jumping can prevent an increase in morning basal bone resorption rate and may benefit long-term bone health in individuals repeatedly exposed to such bouts.
AB - Low energy availability (LEA) is prevalent in active individuals and negatively impacts bone turnover in young females. High-impact exercise can promote bone health in an energy efficient manner and may benefit bone during periods of LEA. Nineteen regularly menstruating females (aged 18–31 years) participated in two three-day conditions providing 15 (LEA) and 45 kcals kg fat-free mass−1 day−1 (BAL) of energy availability, each beginning 3 ± 1 days following the self-reported onset of menses. Participants either did (LEA+J, n = 10) or did not (LEA, n = 9) perform 20 high-impact jumps twice per day during LEA, with P1NP, β-CTx (circulating biomarkers of bone formation and resorption, respectively) and other markers of LEA measured pre and post in a resting and fasted state. Data are presented as estimated marginal mean ± 95% CI. P1NP was significantly reduced in LEA (71.8 ± 6.1–60.4 ± 6.2 ng mL−1, p < 0.001, d = 2.36) and LEA+J (93.9 ± 13.4–85.2 ± 12.3 ng mL−1, p < 0.001, d = 1.66), and these effects were not significantly different (time by condition interaction: p = 0.269). β-CTx was significantly increased in LEA (0.39 ± 0.09–0.46 ± 0.10 ng mL−1, p = 0.002, d = 1.11) but not in LEA+J (0.65 ± 0.08–0.65 ± 0.08 ng mL−1, p > 0.999, d = 0.19), and these effects were significantly different (time by condition interaction: p = 0.007). Morning basal bone formation rate is reduced following 3 days LEA, induced via dietary restriction, with or without high-impact jumping in regularly menstruating young females. However, high-impact jumping can prevent an increase in morning basal bone resorption rate and may benefit long-term bone health in individuals repeatedly exposed to such bouts.
KW - biochemical markers of bone turnover
KW - exercise intervention
KW - female
KW - low energy availability
KW - nutrition
UR - http://www.scopus.com/inward/record.url?scp=85163026635&partnerID=8YFLogxK
U2 - 10.1111/sms.14437
DO - 10.1111/sms.14437
M3 - Article
C2 - 37365858
AN - SCOPUS:85163026635
SN - 0905-7188
VL - 33
SP - 1690
EP - 1702
JO - Scandinavian Journal of Medicine and Science in Sports
JF - Scandinavian Journal of Medicine and Science in Sports
IS - 9
ER -