Identification of potential classes in procedural code using a genetic algorithm

Farshad Ghassemi Toosi, Goetz Botterweck, Asanka Wasala, Jim Buckley

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present a novel approach for discovering and suggesting classes/objects in legacy/procedural code, based on a genetic algorithm. Initially, a (procedures-accessing-variables) matrix is extracted from the code and converted into a square matrix. This matrix highlights the variable-relationships between procedures and is used as input to a genetic algorithm. The output of the genetic algorithm is then visually encoded using a heat-map. The developers can then (1) either manually identify objects in the presented heat-map or (2) use an automated detection algorithm that suggests objects. We compare our results with previous work.

Original languageEnglish
Title of host publicationGECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion
PublisherAssociation for Computing Machinery, Inc
Pages314-315
Number of pages2
ISBN (Electronic)9781450357647
DOIs
Publication statusPublished - 6 Jul 2018
Event2018 Genetic and Evolutionary Computation Conference, GECCO 2018 - Kyoto, Japan
Duration: 15 Jul 201819 Jul 2018

Publication series

NameGECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion

Conference

Conference2018 Genetic and Evolutionary Computation Conference, GECCO 2018
Country/TerritoryJapan
CityKyoto
Period15/07/1819/07/18

Fingerprint

Dive into the research topics of 'Identification of potential classes in procedural code using a genetic algorithm'. Together they form a unique fingerprint.

Cite this