TY - GEN
T1 - Imperfection insensitivity analyses of advanced composite tow-steered shells
AU - Wu, K. Chauncey
AU - Farrokh, Babak
AU - Stanford, Bret K.
AU - Weaver, Paul M.
N1 - Publisher Copyright:
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2016
Y1 - 2016
N2 - Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.
AB - Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.
UR - http://www.scopus.com/inward/record.url?scp=85088353133&partnerID=8YFLogxK
U2 - 10.2514/6.2016-1498
DO - 10.2514/6.2016-1498
M3 - Conference contribution
AN - SCOPUS:85088353133
SN - 9781624103926
T3 - 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
BT - 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2016
Y2 - 4 January 2016 through 8 January 2016
ER -