Abstract
A novel in-fiber whispering-gallery mode (WGM) microsphere resonator-based integrated device is reported. It is fabricated by placing a silica microsphere into an embedded dual-core hollow fiber (EDCHF). Using a fiber tapering method, a silica microsphere can be placed and fixed in the transition section of the hollow core of the EDCHF. The transmitted light from the tapered-input single-mode fiber is coupled into the embedded silica microsphere via the two suspended fiber cores, and hence effectively excites the WGMs. A Q-factor of 5.54 × 103 is achieved over the wavelength range of 1100–1300 nm. The polarization and temperature dependence of the in-fiber WGM microsphere resonator device is also investigated experimentally. This integrated photonics device provides greatly improved mechanical stability, compared with the traditional tapered fiber-coupled WGM microresonator devices. Additional advantages include ease of fabrication, compact structure, and low cost. This novel in-fiber WGM resonator integrated device is ideally positioned to access a wide range of potential applications in optical sensing and microcavity lasing.
Original language | English |
---|---|
Pages (from-to) | 3961-3964 |
Number of pages | 4 |
Journal | Optics Letters |
Volume | 43 |
Issue number | 16 |
DOIs | |
Publication status | Published - 15 Aug 2018 |