TY - JOUR
T1 - In vitro digestibility and antioxidant activity of plant protein isolate and milk protein concentrate blends
AU - Khalesi, Mohammadreza
AU - Fitzgerald, Richard J.
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/7
Y1 - 2021/7
N2 - The replacement of animal with plant proteins in human diets has been increasing in recent years. The impact of blending milk protein concentrate (MPC) with protein isolates from soy (SPI), rice (RPI) and pea (PPI) on the in vitro digestibility and antioxidant activity of the resultant blends was investigated. Different plant protein–MPC blends (i.e., SPI–MPC (25:75), RPI–MPC (50:50) and PPI–MPC (25:75)) were analyzed. The lowest protein digestibility corrected amino acid score (PDCAAS) was associated with RPI (0.70), while the blends had PDCAAS values above 1.00 demonstrating the high digestibility of the proteins in the blends studied. An in vitro simulated gastrointestinal digestion was carried out on the samples. The degree of hydrolysis and gel permeation high performance liquid chromatography profiles showed that the SPI–MPC blend was more extensively digested in the gastric phase compared with the two other blends, while the PPI–MPC and RPI–MPC blends were mainly digested during the intestinal phase. The SPI–MPC digested blend had the highest 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity having a half maximal effective concentration (EC50) of 0.10 ± 0.01 mg/mL. The findings show that blends of plant protein with MPC had higher in vitro digestibility and antioxidant activity compared to the individual plant protein isolates.
AB - The replacement of animal with plant proteins in human diets has been increasing in recent years. The impact of blending milk protein concentrate (MPC) with protein isolates from soy (SPI), rice (RPI) and pea (PPI) on the in vitro digestibility and antioxidant activity of the resultant blends was investigated. Different plant protein–MPC blends (i.e., SPI–MPC (25:75), RPI–MPC (50:50) and PPI–MPC (25:75)) were analyzed. The lowest protein digestibility corrected amino acid score (PDCAAS) was associated with RPI (0.70), while the blends had PDCAAS values above 1.00 demonstrating the high digestibility of the proteins in the blends studied. An in vitro simulated gastrointestinal digestion was carried out on the samples. The degree of hydrolysis and gel permeation high performance liquid chromatography profiles showed that the SPI–MPC blend was more extensively digested in the gastric phase compared with the two other blends, while the PPI–MPC and RPI–MPC blends were mainly digested during the intestinal phase. The SPI–MPC digested blend had the highest 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity having a half maximal effective concentration (EC50) of 0.10 ± 0.01 mg/mL. The findings show that blends of plant protein with MPC had higher in vitro digestibility and antioxidant activity compared to the individual plant protein isolates.
KW - Antioxidant activity
KW - Digestibility
KW - PDCAAS
KW - Plant protein
KW - Protein blend
UR - http://www.scopus.com/inward/record.url?scp=85108699611&partnerID=8YFLogxK
U2 - 10.3390/catal11070787
DO - 10.3390/catal11070787
M3 - Article
AN - SCOPUS:85108699611
SN - 2073-4344
VL - 11
JO - Catalysts
JF - Catalysts
IS - 7
M1 - 787
ER -