TY - JOUR
T1 - Influence of amount of nitrogen on crystallisation of Y-sialon glasses
T2 - In-Situ XRD analysis
AU - Dolekcekic, Emrah
AU - Pomeroy, Michael J.
AU - Hampshire, Stuart
PY - 2005
Y1 - 2005
N2 - Y-SiAlON glasses of composition 36.5 Y: 42.3 Si: 21.2 Al with different amounts of N (0, 5, 8, 15 and 22 in e/o) were produced by melting appropriate mixtures of powders under flowing nitrogen at 1715°C. This composition is known to give B-phase (Y2SiAlO5N) on crystallisation at temperatures below 1050°C. In this work, the effect of nitrogen in the starting glass composition on the crystalline phases formed is discussed. High temperature in-situ XRD analysis was performed on powdered glass samples up to 1150°C by using a Philips X'pert PRO MPD (Multi Purpose Diffractometer) with a HTK 1200 Oven Camera (Anton Paar, Austria). As expected, the results show that different nitrogen contents affect the crystalline phases formed. In all glasses, yttrium apatite silicate forms first, followed by crystallisation of B-phase. The phase transformation from B-phase to Iw-phase (Y3Si 2Al[O,N10] i.e. 10 e/o N) takes place at relatively low temperatures (1050°C) for the lower nitrogen containing samples (5 and 8 e/o), whereas, the transformation does not take place for the glasses with higher nitrogen contents even at the maximum temperature studied (1150°C). This work also confirms that there is a correlation between the temperature where the first crystals appear and the amount of nitrogen in the starting glass.
AB - Y-SiAlON glasses of composition 36.5 Y: 42.3 Si: 21.2 Al with different amounts of N (0, 5, 8, 15 and 22 in e/o) were produced by melting appropriate mixtures of powders under flowing nitrogen at 1715°C. This composition is known to give B-phase (Y2SiAlO5N) on crystallisation at temperatures below 1050°C. In this work, the effect of nitrogen in the starting glass composition on the crystalline phases formed is discussed. High temperature in-situ XRD analysis was performed on powdered glass samples up to 1150°C by using a Philips X'pert PRO MPD (Multi Purpose Diffractometer) with a HTK 1200 Oven Camera (Anton Paar, Austria). As expected, the results show that different nitrogen contents affect the crystalline phases formed. In all glasses, yttrium apatite silicate forms first, followed by crystallisation of B-phase. The phase transformation from B-phase to Iw-phase (Y3Si 2Al[O,N10] i.e. 10 e/o N) takes place at relatively low temperatures (1050°C) for the lower nitrogen containing samples (5 and 8 e/o), whereas, the transformation does not take place for the glasses with higher nitrogen contents even at the maximum temperature studied (1150°C). This work also confirms that there is a correlation between the temperature where the first crystals appear and the amount of nitrogen in the starting glass.
KW - B-phase
KW - Crystallisation
KW - In-situ XRD analysis
KW - Iw-phase
KW - Oxynitrides
KW - YSiAION glass
UR - http://www.scopus.com/inward/record.url?scp=34249744705&partnerID=8YFLogxK
U2 - 10.4028/0-87849-965-2.293
DO - 10.4028/0-87849-965-2.293
M3 - Article
AN - SCOPUS:34249744705
SN - 1013-9826
VL - 287
SP - 293
EP - 298
JO - Key Engineering Materials
JF - Key Engineering Materials
ER -