TY - JOUR
T1 - Injectable, shear-thinning, photocrosslinkable, and tissue-adhesive hydrogels composed of diazirine-modified hyaluronan and dendritic polyethyleneimine
AU - Chandel, Arvind K. Singh
AU - Sreedevi Madhavikutty, Athira
AU - Okada, Saki
AU - Qiming, Zhang
AU - Inagaki, Natsuko F.
AU - Ohta, Seiichi
AU - Ito, Taichi
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024/1/8
Y1 - 2024/1/8
N2 - In the present study, we report the first synthesis of diazirine-modified hyaluronic acid (HA-DAZ). In addition, we also produced a precursor polymer solution composed of HA-DAZ and dendritic polyethyleneimine (DPI) that showed strong shear-thinning properties. Furthermore, its viscosity was strongly reduced (i.e., from 5 × 105 mPa s at 10−3 s−1 to 6 × 101 mPa s at 103 s−1), substantially, which enhanced solution injectability using a 21 G needle. After ultraviolet irradiation at 365 nm and 6 mW cm−2, the HA-DAZ/DPI solution achieved rapid gelation, as measured using the stirring method, and its gelation time decreased from 200 s to 9 s as the total concentrations of HA-DAZ and DPI increased. Following UV irradiation, the storage modulus increased from 40 to 200 Pa. In addition, reversible sol-gel transition and self-healing properties were observed even after UV irradiation. This suggests that the HA-DAZ/DPI hydrogel was crosslinked in multiple ways, i.e., via covalent bonding between the diazirine and amine groups and via intermolecular interactions, including hydrogen bonding, electrostatic interactions, and hydrophobic interactions. A lap shear test showed that the HA-DAZ/DPI hydrogel exhibited strong adhesiveness as a fibrin glue following UV irradiation. Finally, the HA-DAZ/DPI hydrogel showed higher tissue reinforcement than fibrin glue in an ex vivo burst pressure test of the porcine esophageal mucosa.
AB - In the present study, we report the first synthesis of diazirine-modified hyaluronic acid (HA-DAZ). In addition, we also produced a precursor polymer solution composed of HA-DAZ and dendritic polyethyleneimine (DPI) that showed strong shear-thinning properties. Furthermore, its viscosity was strongly reduced (i.e., from 5 × 105 mPa s at 10−3 s−1 to 6 × 101 mPa s at 103 s−1), substantially, which enhanced solution injectability using a 21 G needle. After ultraviolet irradiation at 365 nm and 6 mW cm−2, the HA-DAZ/DPI solution achieved rapid gelation, as measured using the stirring method, and its gelation time decreased from 200 s to 9 s as the total concentrations of HA-DAZ and DPI increased. Following UV irradiation, the storage modulus increased from 40 to 200 Pa. In addition, reversible sol-gel transition and self-healing properties were observed even after UV irradiation. This suggests that the HA-DAZ/DPI hydrogel was crosslinked in multiple ways, i.e., via covalent bonding between the diazirine and amine groups and via intermolecular interactions, including hydrogen bonding, electrostatic interactions, and hydrophobic interactions. A lap shear test showed that the HA-DAZ/DPI hydrogel exhibited strong adhesiveness as a fibrin glue following UV irradiation. Finally, the HA-DAZ/DPI hydrogel showed higher tissue reinforcement than fibrin glue in an ex vivo burst pressure test of the porcine esophageal mucosa.
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=pureapplicaion&SrcAuth=WosAPI&KeyUT=WOS:001142360100001&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1039/d3bm01279d
DO - 10.1039/d3bm01279d
M3 - Article
C2 - 38223981
SN - 2047-4830
VL - 12
SP - 1454
EP - 1464
JO - Biomaterials Science
JF - Biomaterials Science
IS - 6
ER -