TY - JOUR
T1 - Inspiratory muscle training in young, race-fit Thoroughbred racehorses during a period of detraining
AU - Katz, Lisa M.
AU - Stallard, Jessica
AU - Holtby, Amy
AU - Hill, Emmeline W.
AU - Allen, Kate
AU - Sweeney, James
N1 - Publisher Copyright:
© 2020 Katz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/4
Y1 - 2020/4
N2 - Although inspiratory muscle training (IMT) is reported to improve inspiratory muscle strength in humans little has been reported for horses. We tested the hypothesis that IMT would maintain and/or improve inspiratory muscle strength variables measured in Thoroughbreds during detraining. Thoroughbreds from one training yard were placed into a control (Con, n = 3 males n = 7 females; median age 2.2±0.4 years) or treatment group (Tr, n = 5 males, n = 5 females; median age 2.1±0.3 years) as they entered a detraining period at the end of the racing/training season. The Tr group underwent eight weeks of IMT twice a day, five days per week using custom-made training masks with resistance valves and an incremental threshold of breath-loading protocol. An inspiratory muscle strength test to fatigue using an incremental threshold of breath-loading was performed in duplicate before (T0) and after four (T1) and eight weeks (T2) of IMT/no IMT using a custom-made testing mask and a commercial testing device. Inspiratory measurements included the total number of breaths achieved during the test, average load, peak power, peak volume, peak flow, energy and the mean peak inspiratory muscle strength index (IMSi). Data were analysed using a linear mixed effects model, P≤0.05 significant. There were no differences for inspiratory measurements between groups at T0. Compared to T0, the total number of breaths achieved (P = 0.02), load (P = 0.003) and IMSi (P = 0.01) at T2 had decreased for the Con group while the total number of breaths achieved (P<0.001), load (P = 0.03), volume (P = 0.004), flow (P = 0.006), energy (P = 0.01) and IMSi (P = 0.002) had increased for the Tr group. At T2 the total number of breaths achieved (P<0.0001), load (P<0.0001), volume (P = 0.02), energy (P = 0.03) and IMSi (P<0.0001) were greater for the Tr than Con group. In conclusion, our results support that IMT can maintain and/ or increase aspects of inspiratory muscle strength for horses in a detraining programme.
AB - Although inspiratory muscle training (IMT) is reported to improve inspiratory muscle strength in humans little has been reported for horses. We tested the hypothesis that IMT would maintain and/or improve inspiratory muscle strength variables measured in Thoroughbreds during detraining. Thoroughbreds from one training yard were placed into a control (Con, n = 3 males n = 7 females; median age 2.2±0.4 years) or treatment group (Tr, n = 5 males, n = 5 females; median age 2.1±0.3 years) as they entered a detraining period at the end of the racing/training season. The Tr group underwent eight weeks of IMT twice a day, five days per week using custom-made training masks with resistance valves and an incremental threshold of breath-loading protocol. An inspiratory muscle strength test to fatigue using an incremental threshold of breath-loading was performed in duplicate before (T0) and after four (T1) and eight weeks (T2) of IMT/no IMT using a custom-made testing mask and a commercial testing device. Inspiratory measurements included the total number of breaths achieved during the test, average load, peak power, peak volume, peak flow, energy and the mean peak inspiratory muscle strength index (IMSi). Data were analysed using a linear mixed effects model, P≤0.05 significant. There were no differences for inspiratory measurements between groups at T0. Compared to T0, the total number of breaths achieved (P = 0.02), load (P = 0.003) and IMSi (P = 0.01) at T2 had decreased for the Con group while the total number of breaths achieved (P<0.001), load (P = 0.03), volume (P = 0.004), flow (P = 0.006), energy (P = 0.01) and IMSi (P = 0.002) had increased for the Tr group. At T2 the total number of breaths achieved (P<0.0001), load (P<0.0001), volume (P = 0.02), energy (P = 0.03) and IMSi (P<0.0001) were greater for the Tr than Con group. In conclusion, our results support that IMT can maintain and/ or increase aspects of inspiratory muscle strength for horses in a detraining programme.
UR - http://www.scopus.com/inward/record.url?scp=85083157397&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0225559
DO - 10.1371/journal.pone.0225559
M3 - Article
C2 - 32275657
AN - SCOPUS:85083157397
SN - 1932-6203
VL - 15
SP - e0225559
JO - PLoS ONE
JF - PLoS ONE
IS - 4
M1 - e0225559
ER -