TY - JOUR
T1 - Interfacial/foaming properties and antioxidant activity of a silkworm (Bombyx mori) pupae protein concentrate
AU - Felix, Manuel
AU - Bascon, Carmen
AU - Cermeño, Maria
AU - FitzGerald, Richard J.
AU - de la Fuente, Julia
AU - Carrera-Sánchez, Cecilio
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2020/6
Y1 - 2020/6
N2 - The current consumer demand for healthier diets, the growing interest in the search for new sources of protein, and the desire to reduce the negative effects on the environment have increased interest in the study of insect proteins. The present study focused on the technofunctional characteristics (interfacial and foaming properties) and the in-vitro antioxidant activity of a protein concentrate obtained from silkworm (Bombyx mori) pupae (SPC). The isoelectric point of the SPC was close to pH 4.0–5.0 as determined by protein solubility and z potential analysis. Given that the SPC had solubilities of ~50% and z potentials of ~20 mV at pH 2.0 and 8.0, it was decided to further study SPC properties at these pH values. The supernatant obtained after adjustment of SPC to pH 8.0 showed higher (p < 0.05) antioxidant activity than that at pH 2.0 when analysed by the ferric reducing antioxidant power (FRAP) assay (168.0 ± 3.0 V. 43.5 ± 8.1 μmol Trolox Eq. ·g−1 protein). However, no significant differences in antioxidant activity were found between pH 2.0 and 8.0 when using the oxygen radical absorbance capacity (ORAC) assay (1826.0 ± 131.9 vs. 1659.2 ± 46.8 μmol Trolox Eq. g−1 protein). The interfacial properties of SPC were determined at pH 2.0 and 8.0 during protein adsorption and after reaching the pseudo equilibrium state by means of dilatational and interfacial shear rheology following by foaming capacity and stability analyses. Faster adsorption kinetic values were obtained at pH 8 (kD ∗=69.2±0.4 Vs. 29.5±0.9mN/m·s−1/2at pH 2.0). However, lower kinetic values at pH 2.0 increased the elastic behaviour of the viscoelastic interfacial film formed (E's ⁓ 30 mN/m at pH 2.0 V. E's ⁓ 20 mN/m at pH 8.0), which can be related with the higher protein sizes found at pH 2.0. These rearrangements of the SPC components appeared to increase its foaming capacity, whereas the foaming capacity of SPC adjusted to pH 8.0 was minimal.
AB - The current consumer demand for healthier diets, the growing interest in the search for new sources of protein, and the desire to reduce the negative effects on the environment have increased interest in the study of insect proteins. The present study focused on the technofunctional characteristics (interfacial and foaming properties) and the in-vitro antioxidant activity of a protein concentrate obtained from silkworm (Bombyx mori) pupae (SPC). The isoelectric point of the SPC was close to pH 4.0–5.0 as determined by protein solubility and z potential analysis. Given that the SPC had solubilities of ~50% and z potentials of ~20 mV at pH 2.0 and 8.0, it was decided to further study SPC properties at these pH values. The supernatant obtained after adjustment of SPC to pH 8.0 showed higher (p < 0.05) antioxidant activity than that at pH 2.0 when analysed by the ferric reducing antioxidant power (FRAP) assay (168.0 ± 3.0 V. 43.5 ± 8.1 μmol Trolox Eq. ·g−1 protein). However, no significant differences in antioxidant activity were found between pH 2.0 and 8.0 when using the oxygen radical absorbance capacity (ORAC) assay (1826.0 ± 131.9 vs. 1659.2 ± 46.8 μmol Trolox Eq. g−1 protein). The interfacial properties of SPC were determined at pH 2.0 and 8.0 during protein adsorption and after reaching the pseudo equilibrium state by means of dilatational and interfacial shear rheology following by foaming capacity and stability analyses. Faster adsorption kinetic values were obtained at pH 8 (kD ∗=69.2±0.4 Vs. 29.5±0.9mN/m·s−1/2at pH 2.0). However, lower kinetic values at pH 2.0 increased the elastic behaviour of the viscoelastic interfacial film formed (E's ⁓ 30 mN/m at pH 2.0 V. E's ⁓ 20 mN/m at pH 8.0), which can be related with the higher protein sizes found at pH 2.0. These rearrangements of the SPC components appeared to increase its foaming capacity, whereas the foaming capacity of SPC adjusted to pH 8.0 was minimal.
KW - Bioactivity
KW - Dilatational measurements
KW - Interfacial shear rheology
KW - Protein adsorption
UR - http://www.scopus.com/inward/record.url?scp=85077654667&partnerID=8YFLogxK
U2 - 10.1016/j.foodhyd.2020.105645
DO - 10.1016/j.foodhyd.2020.105645
M3 - Article
AN - SCOPUS:85077654667
SN - 0268-005X
VL - 103
JO - Food Hydrocolloids
JF - Food Hydrocolloids
M1 - 105645
ER -