Isolation of pharmaceutical intermediates through solid supported evaporation. Semicontinuous operation mode

Matthäus U. Bäbler, Mebatsion L. Kebede, Raquel Rozada-Sanchez, Per Åslund, Björn Gregertsen, Åke C. Rasmuson

Research output: Contribution to journalArticlepeer-review

Abstract

Solid supported evaporation (SSE) is a simple, nonselective method for isolating nonvolatile compounds from a solution. The solution is put in contact with porous polymer beads onto which the compound deposits upon evaporation of the solvent. This brings some advantages over direct evaporation to dryness in terms of safety, thermal decomposition, and solid handling, as the loaded beads form a free-flowing granular material that is easily recovered. In this paper, SSE in a semicontinuous operating mode is investigated where the solution is continuously fed to (respectively sprayed over) an agitated bed of dry beads put under vacuum. It is found that under conditions where the solvent evaporation rate is high with respect to the feed rate, high bead loadings can be achieved before extensive sticking of beads and compound to the vessel walls occurs. The type of compound and solvent had little influence on the process performance, and, in cases where this was explored, the bead loading was found to be homogeneous. Based on a balance equation for the solvent fed to the system, a model is developed that results in a simple scale up criterion. The latter was successfully applied for transferring SSE from lab to the kilo lab scale.

Original languageEnglish
Pages (from-to)14814-14823
Number of pages10
JournalIndustrial and Engineering Chemistry Research
Volume51
Issue number45
DOIs
Publication statusPublished - 14 Nov 2012

Fingerprint

Dive into the research topics of 'Isolation of pharmaceutical intermediates through solid supported evaporation. Semicontinuous operation mode'. Together they form a unique fingerprint.

Cite this