KFeCuTe2: a new compound to study the removal of interstitial Fe in layered tellurides

Fan Sun, Zhongnan Guo, Ning Liu, Kun Lin, Da Wang, Wenxia Yuan

Research output: Contribution to journalArticlepeer-review

Abstract

A single crystal of a new layered telluride KFeCuTe2 has been successfully synthesized by the self-flux method, which is formed by intercalating K in the parent telluride Fe1+xCuTe2. This new compound crystallizes in the space group I4/mmm with the interstitial Fe in pristine Fe1+xCuTe2 completely removed after K intercalation. X-ray photoelectron spectroscopy (XPS) shows that after intercalation, the valence of Fe switched from a mixture of +2 and +3 to the single trivalent one. The KFeCuTe2 is a Mott semiconductor (Eg = 1.06 eV) with a larger resistivity than that of Fe1+xCuTe2 due to the absence of electron doping from interstitial Fe atoms. Most importantly, the magnetic susceptibility shows the antiferromagnetic transition in KFeCuTe2 at 60 K, instead of the spin-glass behavior in Fe1+xCuTe2, indicating the crucial role of interstitial Fe in breaking the long-range magnetic ordering. Our work provides a new compound to study the effect of interstitial Fe on the crystal and magnetic structure in layered tellurides.

Original languageEnglish
Pages (from-to)3649-3654
Number of pages6
JournalDalton Transactions
Volume46
Issue number11
DOIs
Publication statusPublished - 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'KFeCuTe2: a new compound to study the removal of interstitial Fe in layered tellurides'. Together they form a unique fingerprint.

Cite this