TY - GEN
T1 - Limit load solution and crack driving force estimation scheme for embedded flaws in pipeline girth welds
AU - Pépin, Aurélien
AU - O'Dowd, Noel
AU - Tkaczyk, Tomasz
AU - Nikbin, Kamran
N1 - Publisher Copyright:
© Copyright 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - The acceptability of flaws in a subsea rigid pipeline is usually sanctioned based on the results of an engineering criticality assessment (ECA), carried out considering all loads seen by the pipeline from fabrication to the end of service life. Reel-lay is an efficient installation method, frequently used for installing subsea pipelines. Unlike surface breaking flaws, embedded flaws are not directly assessed in a reeling ECA because the available assessment solutions are too conservative. A work around approach is often used, whereby acceptable surface breaking flaw sizes are deemed acceptable beneath the surface, provided that the embedment depth is equal to or greater than half of the flaw height. However, the results of more recent research work suggest that this approach could be non-conservative in some cases. In this work, a parametric finite-element (FE) study was carried out to assess the effect of the embedment depth, the crack length and the crack height on the load required to cause collapse of the shorter ligament of an embedded flaw. Subsequently, a closed form limit load solution was developed, and compared against available solutions for pipes subjected to tension. A J-based crack driving force (CDF) estimation scheme was developed for a selected material behaviour. Finally, recommendations were made for the direct reeling ECA of subsea pipelines with embedded flaws.
AB - The acceptability of flaws in a subsea rigid pipeline is usually sanctioned based on the results of an engineering criticality assessment (ECA), carried out considering all loads seen by the pipeline from fabrication to the end of service life. Reel-lay is an efficient installation method, frequently used for installing subsea pipelines. Unlike surface breaking flaws, embedded flaws are not directly assessed in a reeling ECA because the available assessment solutions are too conservative. A work around approach is often used, whereby acceptable surface breaking flaw sizes are deemed acceptable beneath the surface, provided that the embedment depth is equal to or greater than half of the flaw height. However, the results of more recent research work suggest that this approach could be non-conservative in some cases. In this work, a parametric finite-element (FE) study was carried out to assess the effect of the embedment depth, the crack length and the crack height on the load required to cause collapse of the shorter ligament of an embedded flaw. Subsequently, a closed form limit load solution was developed, and compared against available solutions for pipes subjected to tension. A J-based crack driving force (CDF) estimation scheme was developed for a selected material behaviour. Finally, recommendations were made for the direct reeling ECA of subsea pipelines with embedded flaws.
UR - http://www.scopus.com/inward/record.url?scp=84961302262&partnerID=8YFLogxK
U2 - 10.1115/PVP2015-45702
DO - 10.1115/PVP2015-45702
M3 - Conference contribution
AN - SCOPUS:84961302262
T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
BT - Design and Analysis
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2015 Pressure Vessels and Piping Conference, PVP 2015
Y2 - 19 July 2015 through 23 July 2015
ER -