TY - JOUR
T1 - Lipschitz stability for the electrostatic inverse boundary value problem with piecewise linear conductivities
AU - Alessandrini, Giovanni
AU - de Hoop, Maarten V.
AU - Gaburro, Romina
AU - Sincich, Eva
N1 - Publisher Copyright:
© 2016 Elsevier Masson SAS
PY - 2017/5/1
Y1 - 2017/5/1
N2 - We consider the electrostatic inverse boundary value problem also known as electrical impedance tomography (EIT) for the case where the conductivity is a piecewise linear function on a domain Ω⊂Rn and we show that a Lipschitz stability estimate for the conductivity in terms of the local Dirichlet-to-Neumann map holds true.
AB - We consider the electrostatic inverse boundary value problem also known as electrical impedance tomography (EIT) for the case where the conductivity is a piecewise linear function on a domain Ω⊂Rn and we show that a Lipschitz stability estimate for the conductivity in terms of the local Dirichlet-to-Neumann map holds true.
KW - Electrical impedance tomography
KW - Lipschitz stability
KW - Piecewise linear conductivities
UR - http://www.scopus.com/inward/record.url?scp=85013413885&partnerID=8YFLogxK
U2 - 10.1016/j.matpur.2016.10.001
DO - 10.1016/j.matpur.2016.10.001
M3 - Article
AN - SCOPUS:85013413885
SN - 0021-7824
VL - 107
SP - 638
EP - 664
JO - Journal des Mathematiques Pures et Appliquees
JF - Journal des Mathematiques Pures et Appliquees
IS - 5
ER -